¹H- AND ¹³C-NMR SPECTRA OF SOME AZOMETHINES OF 5-AMINO-2-PHENYLINDOLE SERIES

Received 27 February 2007

DANG NHU TAI, NGUYEN DINH THANH, PHAM DUY NAM, HOANG THANH DUC Faculty of Chemistry, Hanoi University of Science, VNU

SUMMARY

The ¹H- and ¹³C-spectra of some azomethines of 5-amino-2-phenylindole series have been recorded and researched. It shown that, the substituents in benzene ring influenced on the chemical shift of proton on azomethine bond.

I - INTRODUCTION

Some azomethines of 5-amino-2phenylindole have been synthesized from this amine and some different substituted benzaldehydes in our lab [1]. Their properties, as the metallic corrosion inhibition capacity on CT-3 steel in 2 M HCl medium, were investigated [2]. In some previous papers, we indicated that the azomethines containing indole ring had some interesting spectral properties [3 - 5]. In order to continuing these studies, the proton and carbon-13 NMR spectroscopies of these azomethine series have been recorded and discussed.

II - EXPERIMENTAL

Azomethines of 5-amino-2-phenylindole series what were used in this research have been synthesized in according to the method described [1]. Their structures have the following formulas:

where, R were m-NO₂(I); p-Cl(II); H(III); 3',4'-O₂CH₂(IV); p-OCH₃(V); p-OH(VI); p-N(CH₃)₂(VII); o-OH(VIII).

The ¹H and ¹³C-NMR spectra were recorded in AVANCE Spectrometer (BRUKER, German) at 500 MHz, using DMSO- d_6 as solvent, using TMS as the internal reference.

III - RESULTS AND DISCUSSION

All signals in ¹H-NMR spectra of benzylidene-5-amino-2-phenylindoles were represented in table 1. It shown that total of protons in the azomethine molecules was suitable to molecular formulas. The sharp resonance signal with high intensity that appears in region

642

of 11.500 ppm to 11.683 ppm belongs to NHproton in the indole ring. This signal can be easily distinguished from other ones (see figure 1). The resonance signal of proton in azomethine bond (>CH=N-) is the singlet peak and has medium intensity. This signal appears in region of 8.496 ppm to 9.028 ppm. Both these signals NH and >CH=N- are always in the low field.

	Chemical Shifts δ (npm) (I Hz)									
Substituents				2' 1'	5mis, 0 (j	pm) (J , m	2.) 			
	m-NO ₂	p-Cl	Н	O_2CH_2	<i>p</i> -OCH ₃	<i>р-</i> ОН	p-N(CH ₃) ₂	o-OH	furfuryl	
Protons (multip.)	(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)	
N-H (s)	11.652	11.608	11.590	11.558	11.549	11.528	11.500	11.683	11.583	
Н3	6.955(s)	6.931	6.934(d)	6.913	6.913	6.901	6.889(d)	6.959	6.921(d)	
		(br)	J =1	(br)	(br)	(br)	J=1	(br)	J=1	
H4	7.588(s)	7.510	7.509(d)	7.507	7.433	7.396(s)	7.372(d)	7.631	7.906	
		(br)	J=2	(br)	(br)		J = 1.5	(br)	(br)	
	7.266	7.199	7.189	7.136	7.136	7.106	7.090	7.281	7.141	
H6 (dd)	$J_1 = 9$	$J_1 = 8.5$	$J_1 = 8.5$	$J_1 = 8.5$	$J_1 = 8.5$	$J_1 = 8.5$	$J_1 = 8.5$	$J_1 = 8.5$	$J_1 = 8.5$	
	$J_2 = 1.5$	$J_2 = 1$	$J_2 = 1.5$	$J_2 = 1.5$	J ₂ =2	$J_2 = 1.5$	J ₂ =2	$J_2 = 1.5$	$J_2 = 1.5$	
H7 (d)	7.463	7.439	7.439	7.405÷	7.415	7.404	7.391	7.477	7.415	
	J=9	J=9	J=8.5	7.435	J=8.5	J=7.5	J=8.5	J=8.5	J=8.5	
$H_{azomethine}(s)$	8.755	8.737	8.726	8.600	8.624	8.552	8.496	9.028	8.529	
	8.917 (s)	7.966(d)	7.955	7.405÷	7.894	7.783(d)	7.754(d)	—	-	
H2'		J=8.5	$(dd) J_1 =$	7.435	(d)	J=8.5	J=8.5			
			7.5; $J_2=2$		(J=8.5)					
H6'	8.328	7.966(d)	7.955	7.405÷	7.894	7.783(d)	7.754(d)	7,639 (d)	—	
	$(dd) J_1 =$	J =8.5	(dd)	7.435	(d)	J=8.5	J=8.5	J=7.5		
	$8.5; J_2 =$		$J_1 = 7.5$		J=8.5					
	1.5	7 575(4)	$J_2 - 2$ 7 511(t)		7.067	6 887(d)	6 788(d)	6.067(d)	7.080(d)	
H3'	—	I=8	I=55	—	(d) $I=85$	U.887(u) I=9	I=9	I=6.5	I=3.5	
	7.806(t)	7.575(d)	7.511(t)	7.048 (d)	7.067	6.887(d)	6.788(d)	6.972(t)	7.458	
H5'	J=8	J=8	J=5.5	J = ??.5	(d) $J=$	J=9	J=9	J=??	J=7	
					8.5	-	-			
	8.370(d)	_	7.507(t)	_	-	_	_	7.382	6.694	
H4'	J= 7.5		J=6					J=7.5	$(dd) J_1 =$	
									3.5; J ₂	
									=2	
H2", H6" (d)	7.869	7.871	7.874	7.864	7.866	7.862	7.860	7.881	7.865	
	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	
H3" H5" (t)	7.472	7.468	7.471	7.465	7.466	7.463	7.461	7.476	7.465	
пз, пз (l)	J=7.5	J=8	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	
H4" (t)	7.333	7.326	7.327	7.321	7.321	7.317	7.315	7.337	7.324	
	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	J=7.5	
Other H				CH_2 :	CH_3 :	OH:	CH ₃ :	OH:		
				6.117(s)	3.836(s)	9.987(s)	3.002(s)	13.674(s)		

Table 1: Chemical Shifts in ¹H-NMR spectra of azomethines of 5-amino-2-phenylindole series (in DMSO)

(s: singlet; br: broad; d: doublet; dd: double doublet and t: triplet).

The chemical shifts of proton in the substituted benzene nucleus in the position 2 of indole ring (H2", H3", H4", H5" and H6") are trivially affected by the present of different substituents. For example, protons H2" and H6" have doublet signals in the narrow region from 7.860 to 7.881 ppm; protons H3" and H5" have triplet signals with chemical shift $\delta_{\rm H} = 7,461 \div$ 7,476 ppm; and the resonance signal of proton H4" is a triplet one in region from 7.315 to 7.337 ppm. It shown that, the resonance signal of proton H3 is easily recognized as a singlet one in the high field at 6.889 ÷ 6.959 ppm. Protons H6 have double doublet signals and H7 have doublet signals, with $\delta(H6) < \delta(H7)$, in region of 7.090 ÷ 7.477 ppm; sometimes, these signals overlap each other and raise difficulties in distinguishing them.

We recognized that there is an order of chemical shifts of substituted benzylidene-5amino-2-phenylindoles (I-VIII) as following: *p*-N(CH₃)₂<*p*-OH<*p*-OCH₃<3',4'-O₂CH₂<H<*p*-Cl<*m*-NO₂. The linear regression between chemical shift $\delta_{\rm H}$ and Hammett's σ constants in azomethines of 5-amino-2-phenylindole series is represented in figure 2.

Figure 1: ¹H-NMR spectrum of benzylidene-5amino-2-phenylindole

This regression can be expressed by following equation: $\delta_x = 0.1896\sigma + 8.6596$ (n = 7, R² = 0.8377, F = 25.81).

This equation with the slope $\alpha = 0.1896 > 0$ indicated that the electron-donating substituents (with $\sigma < 0$) cause the upfield shift of $\delta_{\text{Hazomethine}}$ and the electron-withdrawing substituents (with $\sigma > 0$) cause the downfield shift of this chemical shift values. However, this influences are insignificant which are expressed the small value of α , so it could indicated the dependence of chemical shift of these carbon atoms on their density charge.

Figure 2: Linear correlation regression between chemical shift δ_{H} (A) and δ_{C} (B) with the Hammett's σ constants in azomethines of 5-amino-2-phenylindole series

The ¹³C-NMR spectra of these azomethines have been recorded. The chemical shifts on carbon atoms in these azomethines are represented in table 2. From table 2, it has indicated that the resonance signal of carbon atom on the azomethine bond was always in the low field at $152.460 \div 161.382$ ppm. This signal can be

644

distinguished from another one of other carbon atoms. In case of the benzene nucleus in position 2 of indole ring, the resonance signals of pairs of carbon atoms C2" and C6", C3" and C5" have the more intensive ones and are in

regions of $124.894 \div 125.044$ ppm and $128.686 \div 128.898$ ppm, respectively. The carbon atoms C1" and C4", in turn, have the resonance signals in regions of $130.360 \div 132.150$ ppm and $127.408 \div 127.624$ ppm, respectively.

	Chemical Shifts, δ (ppm)									
Substituents	<i>m</i> -NO ₂	p-Cl	Н	3,4- O ₂ CH ₂	<i>p</i> -OCH ₃	p-OH	<i>p</i> - N(CH ₃) ₂	o-OH	furfuryl	
Carbon Atom	(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)	
C2	138.844	138.700	138.608	138.549	138.496	138.439	138.320	139.042	138.645	
C3	99.288	99.194	99.144	99.100	99.073	99.039	98.987	99.250	99.168	
C4	112.538	112.010	111.739	111.606	111.585	111.562	111.509	112.308	111.774	
C5	142.820	143.422	143.800	143.877	144.213	144.458	144.878	140.223	143.529	
C6	116.519	116.478	116.473	116.511	116.493	116.500	116.575	116.074	116.268	
C7	111.755	111.677	111.628	111.532	111.376	111.19	110.943	111.961	111.691	
C8	136.522	135.455	136.108	135.950	135.864	135.752	135.556	136.480	136.146	
C9	129.083	129.097	129.097	129.121	129.128	129.138	129.178	129.153	129.115	
Cazomethine	155.024	155.944	157.321	156.617	161.382	160.014	157.171	160.397	152.460	
C1'	134.212	135.235	136.569	131.444	129.505	128.065	124.504	118.898	115.284	
C2'	122.190	128.829	128.238	106.053	129.946	130.144	129.748	160.238	145.616	
C6'	138.224	128.829	128.238	147.924	129.946	130.144	129.748	132.193	_	
C3'	148.227	129.822	128.858	149.613	114.163	115.545	111.509	116.436	_	
C5'	131.937	129.822	128.858	101.547	114.163	115.545	111.509	119.533	112.302	
C4'	124.871	136.252	130.719	108.335	156.781	157.066	151.962	132.413	145.355	
C1"	130.360	131.944	132.023	132.063	132.079	132.108	132.150	131.873	132.006	
C2", C6"	125.004	124.974	124.950	124.950	124.933	124.952	124.894	125.044	124.952	
C3", C5"	128.884	128.876	128.686	128.874	128.865	128.867	128.852	128.898	128.875	
C4"	127.557	127.504	127.456	127.45	127.425	127.408	127.353	127.624	127.482	
Other carbon				δ _{CH2} : 39.596	δ _{CH3} : 55.314		δ _{CH3} : 39.722			

Table 2: Chemical Shifts in ¹³C-NMR spectra of azomethines of 5-amino-2-phenylindole series (in DMSO)

In case of substituted benzene nucleus of aldehyde component, the situation can be divided into two different groups. For *para*-substituted benzene nucleus (II-III and V-VII), the pair of carbon atoms C2' and C6' give the more intensive signals in region 128.238 \div 130.144 ppm, and carbon atoms C3' and C5' have similar ones in regions of 111.509 \div 129,822 ppm. The electron-donating substituents in *para*-position, such as OCH₃ (V),

OH (VI), N(CH₃)₂ (VII), cause the chemical shifts of C3' and C5' to move upfield (with $\delta = 111.509 \div 115.545$ ppm), while the electron-withdrawing substituents have some influences on the contrary.

The resonance signals in 13C-NMR spectra of carbon atoms in indole ring, essentially, were influenced by the present of the substituents in aldehyde component. The carbon atom C3 has lowest chemical shift, with $\delta_c = 98.987 \div 99.288$

ppm and the carbon atom C5 has highest one, with $\delta_c=140.223 \div 144.878$ ppm. The change regions of chemical shifts of different carbon atoms in azomethines I-VIII can be summarized as following from the high field signal to low field one (see table 3).

Similarly in case ¹H-NMR spectra, there were some linear correlation regression of carbon-13 chemical shifts of carbon atoms in position C1' and azomethine-carbon atom with Hammett's σ constants of substituents in benzene-aldehyde component. These relationships can be expressed by equations

 $δ_{Cazomethine} = -2.5233 σ + 157.3968$ (n = 7; R² = 0.292; F = 2.057) and $δ_{CI'} = 7.3041 σ + 132.0632$ (n = 7; R² = 0.6726; F = 10.271), respectively. The slopes of those equations are opposite signs ($α_{Cazomethine} < 0$ and $α_{CI'} > 0$), it is indicated that the substituents on benzene-aldehyde ring have opposite influences on the position of carbon-13 chemical shift of these carbon type: The electron-donating substituents (σ < 0) make $δ_{Cazomethine}$ moving to downfield and $δ_{CI'}$ moving to upfield, and on the contrary, the electron-withdrawing substituents (σ > 0) cause $δ_{Cazomethine}$ to appear upfield and $δ_{CI'}$ -downfield.

Table 3: Region of chemical shifts in ¹³C-NMR spectra of azomethines of 5-amino-2-phenylindole series (in DMSO)

Carbon	Region (δ, ppm)	Carbon	Region (δ, ppm)	Carbon	Region (δ, ppm)
C2	138.320 ÷ 139.042	C8	135.455 ÷ 136.522	C1'	118.898 ÷ 136.569
C3	98.987 ÷ 99.288	C9	129.083 ÷ 129.138	C2'	122.190 ÷ 160.238
C4	111.509 ÷ 112.538	C1"	130.360 ÷ 132.150	C3'	111.509 ÷ 149.613
C5	140.223 ÷ 144.878	C2" C6"	124.894 ÷ 125.044	C4'	108.225 ÷ 157.066
C6	116.074 ÷ 116.575	C3" C5"	128.686 ÷ 128.898	C5'	101.547 ÷ 131.937
C7	110.943 ÷ 111.76	C4"	127.408 ÷ 127.624	C6'	128.238 ÷ 147.924
		Cazomethine	155.024 ÷ 168.382		

Figure 3: The C-H interactions in HMBC spectrum of benzylidene-5-amino-2-phenylindole

The long and short C–H interactions can be shown in the NMR spectra with twodimensional experiment, HSQC and HMBC respectively. In the HSQC spectrum of azomethine III (R=H), it's indicated that the short-range C–H interactions in each C–H bond, as following pairs: C3–H3; C_{azomethine}–H_{azomethine}, C4–H4, C2" and C6" with H2" and H6"; C4"– H4"; C2' and C6' with H2' and H6'. The HMBC spectrum of azomethine III (R=H) that is represented in figures 3 and 4 indicated some long-range C–H interactions in azomethine molecules.

IV - CONCLUSIONS

The ¹H- and ¹³C-spectra of some azomethines of 5-amino-2-phenylindole series have been recorded and researched. It shown that, the substituents in benzene ring influenced

on the chemical shift of proton on azomethine bond.

Figure 4: A part of HMBC spectrum of benzylidene-5-amino-2-phenylindole

This publication is financial supported from the National Basic Research Program in Natural Sciences.

REFERENCES

- Dang Nhu Tai, Nguyen Dinh Thanh, Pham Duy Nam, Hoang Thanh Duc. Vietnam J. Sci., VNU, Vol. XXII, No. 3A PT, P. 159 (2006).
- Dang Nhu Tai, Nguyen Dinh Thanh, Pham Duy Nam, Hoang Thanh Duc. Proceedings, The second Hanoi Congress of and applications, 11/2006.
- Dang Nhu Tai, Nguyen Dinh Trieu, Nguyen Minh Thao, Nguyen Dinh Thanh. Vietnam J. Chem. Vol. 26, No. 4, 1-3 (1988); [C.A., Vol. 114, 1991,23308t].
- Dang Nhu Tai, Nguyen Dinh Thanh, Trieu Quy Hung. Proceedings, 8th Eurasia Conference on Chemical Sciences, Hanoi, 20/10/2003, P. 1 - 9.
- Dang Nhu Tai, Nguyen Dinh Thanh, Tran Dinh Phong. Proceedings, 10th Asian Chemical Congress, Hanoi, 20/10/2003, P. 54 - 67.