
CONTRIBUTION TO THE STUDY ON CHEMICAL CONSTITUENTS OF HEDYOTIS CRASSIFOLIA L., (RUBIACEAE)

Received 30 May 2006 BUI CHI HUU¹, NGUYEN KIM PHI PHUNG² ¹Pedagogic College of Long An ²Department of Chemistry, UNS, National University - Ho Chi Minh City

SUMMARY

Six compounds as ursolic acid (1); 3β -hydroxyurs-11-ene-28(13)-lactone (2); 3α , 13β dihydroxyurs-11-ene-28-oic acid (3); oleanolic acid (4); 3β -D-glucopyranosyl- β -sitosterol (5) and 3β , 6β -dihydroxyolean-12-ene-28-oic acid (6) were isolated from Hedyotis crassifolia L. (Rubiaceae). Among them, (3) was a new triterpen.

I - INTRODUCTION

Hedyotis corymbosa L., Hedyotis diffusa Willd, Hedyotis heynii R. Br. have widely used in the Asian traditional medicine to cure the inflammation of the liver [1], infected injury [2], snake-bite [3] and especially to cure cancer [4]. Their chemical constituents and pharmaceutical properties have already been reported.

Hedyotis crassifolia L. (Vietnamese name: An điềnlá dây), the plant that is the same genus with these above-mentioned ones but has not yet been studied. In this paper, we report a preliminary result about chemical constituents of this plants growing in Vietnam.

Figure 1: Part of Hedyotis crassifoli

С	(<u>X</u>)	2	3	¹ H-NMR (δ ppm)		
	(C_5D_5N)	(DMSO)	$(CDCl_3 +$	(X)	2	3
	(δppm)	(\delta ppm)	CD ₃ OD)	(C_5D_5N)	(DMSO)	$(CDCl_3 + CD_3OD)$
1	38.7	38.42	38.20			
2	23.2	22.12	22.67			
3	78.0	76.58	78.53	3.44 (dd; J = 9.0; 7.3 Hz)	3.01 (dd; J = 10; 5.5 Hz)	3.61 (s)
4	39.6	38.94	38.78			
5	55.1	53.84	54.66			
6	18.0	17.30	17.66			
7	31.0	30.90	29.57			
8	42.1	41.06	41.59			
9	53.4	52.25	52.94			
10	36.7	37.03	36.23			
11	133.7	133.02	133.64	5.65 (dd;	5.49 (dd;	5.49 (dd;
				J = 10.4; 3.0 Hz)	J = 10.0; 2.5 Hz)	J = 10.0; 3.0 Hz)
12	129.4	128.49	128.50	6.01	5.98	5.93
				(d; J = 10.4 Hz)	(d; J = 10.0 Hz)	(d; J = 10.0 Hz)
13	89.4	88.90	90.20			
14	42.3	41.33	41.83			
15	27.9	26.69	26.57			
16	25.9	24.95	25.41			
17	45.2	44.28	45.15			
18	60.6	59.35	60.47			
19	38.7	37.55	38.01			
20	40.4	39.95	40.12			
21	31.6	30.08	30.64			
22	32.0	30.90	31.12			
23	28.4	27.68	27.56	0.84 (s)	0.83 (s)	0.87 (s)
24	16.0	15.24	14.78	1.01 (s)	0.95 (s)	1.00 (s)
25	16.2	15.43	15.97	1.19 (s)	1.12 (s)	1.13 (s)
26	19.2	18.57	18.68	1.22 (s)	1.23 (s)	1.22 (s)
27	18.3	17.60	17.75	1.24 (s)	1.25 (s)	1.22 (s)
28	179.3	178.64	180.64			
29	18.2	17.21	17.57	0.97 (d, J = 6 Hz)	0.93 (d, J = 6 Hz)	0.95 (d., J = 6 Hz)
30	19.4	18.72	18.96	0.83 (d, J = 6 Hz)	0.89 (d, J = 6 Hz)	0.90 (d. J = 6 Hz)

Table 1: The comparison (δppm) of ¹H-NMR and ¹³C-NMR spectra of compounds **2** and **3** with the authentic sample of 3β,13β-dihydroxyurs-11-ene-28-oic acid (**X**) [5]

С	¹³ C-NMR (δppm)	DEPT	¹ H-NMR	HMBC $({}^{2}J_{CH} \text{ and } {}^{3}J_{CH})$
1	40.10	-CH ₂ -		
2	27.07	-CH ₂ -		
3	77.14	>CH-OH	2.92 (dd, J = 11.5; 6.5 Hz)	
4	40.05	>C<		
5	55.09	>CH-		$C_6-O\underline{H}/C-5 (^3J_{CH})$
6	66.19	>CH-OH	4.34 (br.s)	$C_6-O\underline{H}/C-6 (^2J_{CH})$
7	38.96	-CH ₂ -		
8	37.96	>C<		
9	47.34	>CH-		
10	36.02	>C<		
11	22.76	-CH ₂ -		
12	121.67	-CH=	5.18 (t, J = 0.2 Hz)	H-12/C-9; H-12/C-14; H-12/C-18
13	143.12	=C<		
14	41.65	>C<		
15	27.07	-CH ₂ -		
16	22.54	-CH ₂ -		
17	45.61	>C<		
18	40.75	>CH-	2.75 (dd, J = 14; 4 Hz)	H-18/C-19 (² J _{CH})
19	45.37	>CH ₂		
20	30.30	>C<		
21	33.25	-CH ₂ -		
22	32.05	-CH ₂ -		
23	27.77	-CH ₃	0.94 (s)	
24	17.13	-CH ₃	1.05 (s)	
25	16.29	-CH ₃	1.21 (s)	
26	17.67	-CH ₃	0.97 (s)	
27	25.55	-CH ₃	1.05 (s)	
28	178.46	-COOH		
29	32.73	-CH ₃	0.87 (s)	
30	23.26	-CH ₃	0.87 (s)	

Table 2: The ¹H-, ¹³C-, DEPT-NMR, HMQC and HMBC (DMSO, 500 MHz) of 6

II - EXPERIMENTAL

1. Plant material

Plants were collected in Long An province in October 2002 and was identified by Dr. Tran Hop, Department of Biology, University of Natural Sciences, National University - Ho Chi

Minh City.

2. Extraction and isolation

Plants were washed, dried, ground into powder and exhaustedly extracted by 95° ethanol at room temperature. After evaporating, the ethanolic solution gave crude extract. The crude extract was subjected to silica gel solid phase extraction [7], and then successively eluted with petroleum ether, chloroform A, chloroform B and methanol. Each fraction of chloroform A, chloroform B and methanol were rechromatographied to afford six compounds.

Compound 1 was isolated from chloroform A. Compounds 2, 3 and 4 were isolated from chloroform B and compounds 5 and 6 from methanol fraction. Their yield (%) comparing to the dried powder was 0.27, 0.008, 0.001, 0.17, 0.034 and 0.035, respectively.

III - RESULTS AND DISCUSSION

Using modern methods (IR, NMR, MS) and comparing with references, the chemical structures of these compounds were elucidated.

1. Compound 2

White powder. M.p.: $161 - 163^{\circ}$ C (methanol). Silica gel TLC with eluent of benzene : chloroform : methanol (1 : 9 : 0.1) revealed by concentrated sulfuric acid gave one lotus-red spot with Rf = 0.70. *LC-MS*, ESI spectrum showed the [M]⁺ ion peak at m/z = 454 corresponded to C₃₀H₄₆O₃. IR(KBr) v_{max} cm⁻¹: 3447 (O-H); 1767 (strong, C=O lactone); 1638 (C=C); 1090 (C-O). ¹H-, ¹³C-NMR (DMSO, 500 MHz) were presented in table 1.

2. Compound 3

White powder. M.p.: 231 -232°C (recrystallized in methanol). Silica gel TLC. with eluent of benzene : chloroform : methanol (1:9:0.1) revealed by concentrated sulfuric acid gave one lotus-red spot with Rf = 0.56. IR(KBr) v_{max} cm⁻¹: 3443 (O-H); 1695 (medium, C=O acid); 1639 (C=C); 1217 (C-O). ¹H-, ¹³C- $(CDCl_3+CD_3OD, 500 \text{ MHz})$ were NMR presented in table 1. There was a little difference from the standard compound (3β,13β-dihydroxyurs-11-ene-28-oic acid [5]) that compound 3 had a pointed resonant peak of H3 at $\delta ppm = 3.61$, showed that this proton occupied *β*-position so the hydroxyl group occupied the α -position. These findings substantiated that **3** is 3α , 13β -dihydroxyurs-11ene-28-oic acid and is a new triterpen.

3. Compound 6

powder. M.p.: 211 - 212°C White (methanol). Silica gel TLC. with eluent of hexane: ethyl acetate (1:1) revealed by concentrated sulfuric acid gave one dark violet spot with Rf = 0.50. LC-MS, ESI spectrum showed the [M]⁺ peak at m/z = 472, suited to the formular $C_{30}H_{48}O_4$ or $C_{30}H_{47}O_3(OH)$. The spectra also had peaks at m/z = 248 (100), 203 (90) that were characteristic peaks of oleanolic acid, so 6 perhaps was an oleanolic acid that contained one more hydroxyl group. ¹H-, ¹³C-, DEPT-NMR, HMQC and HMBC (DMSO, 500 MHz) were presented in table 2 and figure 2. The ¹H-NMR and HMQC showed that the second hydroxyl group is at C-6 ($-CH_6$ -OH at $\delta ppm =$ 4.34). The signal was a broad singlet that meaned it had the little J, so the hydrogen $-C_6H$ -OH was at the position α and the hydroxyl group $-C_6H-OH$ was at the position β . In conclusion, **6** was 3β , 6β -dihydroxyolean-12ene-28-oic acid (acid sumaresinolic) [6].

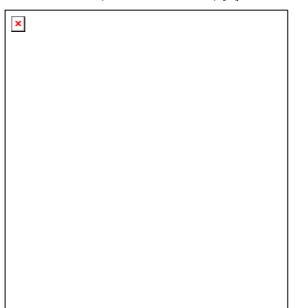


Figure 2: HMBC spectrum of 6

REFERENCES

1. Y. Yoshida, M. Wang, B. E. Shan, U. Yamashita. International Journal of Immu-

nopharmacology. 19(7). 359 - 370 (1997).

- 2. Lai Quang Long, Pham Thanh Ky, Vu Van eien, Chu Dinh Kinh. Magazine of Pharmaceutics, 9, 9 - 11 (2001).
- Le Tran Duc. Medicinal plant of Viet Nam, cultivated, processed, initially treatment. Agriculture Publishing House. 1259 (1965).
- 4. Huang Xiao Jian. Zhongcaoyao, 27 (7), 408

(1996) (C.A., 125, 257321w).

- Huang Hao, Sun Han Dong, Zhao Shou Xun. Phytochemistry, 42(6), 1665 - 1666 (1996)
- 6. Shashi B. Mahato, Asish P. Kundu. Phytochemistry, 37(6), 1517 - 1575 (1994)
- 7. Richard J.P. Cannell. Natural products isolation. Humana Press, 68 74 (1998).