NITRILE GLUCOSIDE, FLAVONOL GLUCOSIDE AND POLYPHENOLIC ACIDS FROM *EHRETIA DENTATA* COURCH.

Received 5 June 2006

TRINH THI THUY, NGUYEN HUY CUONG, TRAN VAN SUNG Institute of Chemistry, Vietnamese Academy of Science and Technology

SUMMARY

Chemical investigation of the leaves of Ehretia dentata Couch. growing in Hoa Binh, Vietnam led to the isolation and structural elucidation of a nitril glucoside, ehretioside A1, the flavonol glucoside astragalin, as well as rosmarinic acid and methyl rosmarinat. These structures were determined on the basis of MS and NMR spectroscopic data.

Key words: *Ehretia dentata; boraginaceae; nitrile glucoside; cyanoglucoside; astragalin; rosmarinic acid.*

I - INTRODUCTION

Ehretia dentata (local name Cùm rum răng or Cườm cườm) belongs to the family Boraginaceae, is a small trees growing wild in Vietnam [1]. Its stem bark and leaves are useful in the therapy of certain inflammatory processes species [2]. Some Ehretia contain cyanoglucosides and phenolic acids. Chemical constituents of *E. dentata* have not yet been studied. In our search for biological active compounds from Vietnamese plants, we now report the isolation and structural determination of nitrile glucoside, ehretioside A1; flavonol glucoside, astragalin; rosmarinic acid and methyl rosmarinate from the leaves of E. dentata. These structures were elucidated by MS, including HR-MS, ¹H- and ¹³C-NMR techniques.

II - EXPERIMENTAL

1. General

Optical rotation $[\alpha]_D$: Digital Polarimeter Jasco DIP 1000. EIMS: ADM 402, 70 eV, 228

Finigan TSQ 700. HR-ESI-MS: BRUKER BIOAPEX 70e Fourier transform. NMR: BRUKER Avance 500 spectrometer at 499.8 MHz (¹H) and 125 MHz (¹³C, ¹³C-DEPT). Chemical shifts were referenced to internal TMS ($\delta = 0$, ¹H) and CD₃OD ($\delta = 49.0$, ¹³C) or pyridine- d_5 ($\delta = 75.3$, ¹³C). CC: Silica gel 60, 0.06 - 0.2 mm (Merck) for the first column, silica gel 60, 40 - 63 µm (Merck) for the following columns. TLC: Silica gel 60 F-254 (Merck).

2. Plant material

The leaves of *E. dentata* were collected in Hoa Binh province, in North of Vietnam, in 2005. The species was identified by Dr. Vu Xuan Phuong, Institute of Ecology and Natural Resources, VAST, Hanoi, Vietnam. A voucher specimen is deposited in the Herbarium at the same Institute.

3. Extraction and isolation

The dried and powdered leaves of *E. dentata* (600 g) were extracted with 90% aq. EtOH at room temperature. EtOH was evaporated *in*

vacuo at 45°C and the aq. solution (45 g) was partitioned with *n*-hexane followed by EtOAc and *n*-BuOH. The organic solvents were evaporated *in vacuo* to afford 25.5, 2.5 and 18.6 g of *n*-hexane, EtOAc and *n*-BuOH extracts, respectively. The n-BuOH extract (18 g) was chromatographed over silica gel with gradient EtOAc-MeOH \rightarrow EtOAc-MeOH-H₂O (60 : 10 \rightarrow 60 : 10 : 1) to give 10 fractions (F-1 \rightarrow F-10).

a) (-)-Ehretioside A1 (1)

Compound **1** was purified from fraction 6 by silica gel CC with CHCl₃-EtOAc-MeOH (80:20:1), white powder from MeOH, yield 70 mg (0.0116%); HR-ESI-MS (*m*/*z*): 452.15211 (calc. 452.15272, C₁₉H₂₇NO₁₀Na). $[\alpha]_D^{19}$ –343^o (*c* 0.5, MeOH); Lit. [2]: $[\alpha]_D$ + 39^o (*c* 1.0, pyridine); IR v_{max}^{KBr} (cm⁻¹): 3480 (OH), 3366, 3202, 2917, 2234 (C=N), 1689, 1644 (C=O),

 13 C-NMR data (see table 1). 1089 , 1044 (C=O), 13 C-NMR data (see table 1).

b) Astragalin (kaempferol-3-O-β-D-glucoside, (2)

Astragalin was isolated from F-1 + F-2, yield 56 mg (0.0933%). Powder from MeOH/EtOAc; ESI-MS (m/z): 471.5 [M+Na]⁺ (C₂₁H₂₀O₁₁Na), 446.9 [M-H]⁻.

c) Rosmarinic acid (3)

The crude compound **3** was isolated from F-3 and further purified by chromatography on sephadex LH-20 (MeOH) and then silica gel with EtOAc-MeOH (60:10). Powder from MeOH/EtOAc, yield 30 mg (0.005%); $[\alpha]_{D}^{20}$ +71° (*c* 1.0, MeOH) (Lit. [7]: $[\alpha]_{D}^{22}$ +56°] for R (+)-form); IR v_{max}^{KBr} (cm⁻¹): 3427 (OH), 1681 (C=O), 1600, 1523, 1379, 1268, 1181, 1115, 815, 560; ESI-MS (*m*/*z*): 383 [M+Na]⁺ (90), 361 [M+H]⁺ (13), 163 (12).

d) Methyl rosmarinate (4)

Compound **4** was isolated from F-3 and further purified by chromatography on silica gel with EtOAc-MeOH (60:10). White powder from MeOH-EtOAc, yield 27 mg (0.0045%); $[\alpha]^{20}_{\text{ D}}$

+33° (*c* 1.0, MeOH); IR v_{max}^{KBr} (cm⁻¹): 3395 (OH), 2960, 2852, 1697 (C=O), 1600, 1521, 1447, 1279, 1162, 1017; ESI-MS (*m*/*z*): 397 [M+Na]⁺, 375 [M+H]⁺ (C₁₉H₁₈O₈), 302 (24), 163 (12).

III - RESULTS AND DISCUSSION

The residue of an ethanol extract of the leaves of E. dentata was partitioned with nhexane, ethyl acetate and *n*-butanol, successively. The EtOAc and *n*-butanol extracts, after evaporation of the solvents, were subjected chromatography column and then to recrystallization to give compounds 1 - 4 and other triterpenes.

The HR-ESI-MS of compound 1 gave the $[M+Na]^+$ peak at m/z 452.15211 corresponding to the molecular formula $C_{19}H_{27}NO_{10}Na$ (M = 429). The IR spectrum showed absorption at v*3480 (OH), 2234 (CN) and 1689 cm⁻¹ (CO). The ¹H- and ¹³C-NMR spectra indicated the presence of a sugar moiety and was identified as β -D-glucopyranose by anomeric signals at $\delta_{\rm H}5.07$ (d, J = 7.8 Hz, H-1') and $\delta_{\rm C}102.27$ (C-1'). Its characteristic signals in the 1 H- and 13 C-NMR spectra (table 1) and the fragment in ESI-MS spectrum (m/z 268, [M+H-Glu]⁺) indicated the molecular formula $C_{13}H_{17}NO_5$ for the aglycone. The ¹H-NMR spectrum displayed an olefinic proton (H-10) at $\delta 5.85$ (t, J = 1.2 Hz) coupling with protons of two methyl groups at $\delta 1.96$ and 2.02 (each 3H, d, J = 1.1 Hz, in CD₃OD), indicating a senecioic acid ester moiety [2, 3]. This was further confirmed by the signals at δ 116.61 and 157.01 for C-10 and C-11, respectively in the ¹³C-NMR spectrum. significant for Compound 1 was the confirmation of the position of the senecioic acid moiety. The signal of the proton at C-3 (δ_{H} 4.24) was significant downfield-shifted ($\Delta \delta \approx$ 1.0 ppm) compared with the corresponding proton of 1a [2].

NMR spectra of **1** indicated the presence of cyanomethylene group by methine signals $[\delta_{H}6.28 \text{ (d, J} = 1.8 \text{ Hz}), \delta_{C}95.68]$ and a

quaternary carbon (δ_c 166.03). Comparison the ¹³C-NMR data of 1 with those of simmondsin (1a) showed a significant differences: 17.6 ppm downfield shift at C-3, where the senecioyl moiety is attached, 7.1 ppm upfield shift at C-2 and 8.4 ppm downfield shift at C-4 for 1 (table 1). This results confirmed the position of the senecioic acid ester linkage at C-3. The sugar moiety is attached to C-6 of the aglycone was determined by comparison with reported data of simmondsin (1a)The absolute [3]. configuration of **1a** was determined as (1Z)-(2S,3R,4S,6R)-1-cyanomethylene-2-hydroxy-

1: Ehretioside A1

3,4-dimethoxycyclohexyl β-D-glucopyranoside by total synthesis [3]. The ¹H-, ¹³C-NMR spectral data of 1 were in good agreement with those of ehretioside A1. The optical rotation of 1 was found to be $[\alpha]_{D}^{19}$ - 345° (*c* 0.5, MeOH). Thus, compound 1 was established as (-)ehretioside The enantiomeric (+)-A1. ehretioside A1 (lit. [2]: $[\alpha]_D^{20}$ +39°, MeOH) has been isolated for the first time from E. Cyanoglucoside philippinensis. showed significant anti-bacterial activity, inhibition of feeding in rat and other unique biological activity [2, 3].

1a: Simmondsin

3: R = H Rosmarinic acid **4**: R = Me Methyl rosmarinate

Compound 2 was isolated as yellow solid in a yield of 0.0933% from the ethyl acetate extract using column chromatography on silica gel. The ESI-MS spectrum of 2 gave a peak at m/z 471 [M+Na]⁺, combination with ¹H- and ¹³C-NMR spectra leading to the molecular formula $C_{21}H_{20}O_{11}$. The ¹H- and ¹³C-NMR spectra indicated the presence of a β -D-glucopyranose linked to a flavonol [anomeric proton and carbon at $\delta_{\rm H}4.83$ (d, J \approx 7.5 Hz); $\delta_{\rm C}104.13$; CH x 6 and Cq x 9 (C=O x 1)]. The aglycon is substuted with 5,7-dihydroxy groups ($\delta_{\rm H}$ 6.29 and 6.43 (each 1H, d, J \approx 2 Hz). One substituent in ring B was identified as a hydroxy group by

	1a CD ₃ OD [2]	ehretioside A1 pyridin- d_5 [2]		1, pyridin- d_5		1, CD ₃ OD	
С	$\delta_{\rm C}$	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	δ_{H}
1	166.4	165.0		165.05		165.82	
2	70.7	67.9	5.68 dd (10, 2)	67.98	5.71 d (9.7)	77.87	4.65 dd (3.2, 9.9)
3	86.3	79.0	5.18 dd (10, 3)	78.96	5.22 dd (9.9, 3.1)	68.73	4.24 dd (3.3, 8.2)
4	76.7	67.7	4.66 ddd (3, 3,3)	67.73	4.68 s br	68.38	3.85 dd (12.0, 2.4)
5	32.0	34.3	2.69 dt (15, 3) 1.82 dt (15, 3)	34.3	2.69 dt (15.3, 2.8) 1.88 dd (15.3, 3.0)	35.36	2.45 dt (15.3, 3.7) 1.91 dt (15.3, 3.7)
6	76.5	76.0	5.52 t (3)	75.98	5.57 d (1.0)	77.60	4.91 dd (9.9; 1.8)
7	95.2	95.6	6.25 d (2)	95.68	6.28 d (1.8)	95.88	5.78 d (2.0)
8	117.6	116.9		117.01		117.28	
9	58.5	166.0		166.03		167.38	
10	58.2	116.6	5.56 sept. (5)	116.61	5.56 d (5.3)	116.85	5.85 t (1.2)
11		156.9		157.01		159.06	
12		26.9	1.56 d (1.3)	26.90	1.55 s	27.43	1.96 d (1.1)
13		20.0	2.07 d (1.3)	20.02	2.07 s	20.42	2.20 d (1.1)
1′	104.1	102.7	5.03 d (7.8)	102.77	5.07 d (7.8)	104.46	4.45 d (7.8)
2'	74.7	75.0	3.97 dd (7.8, 8.8)	75.07	3.94 d (2.6)	74.81	3.86 dd (12.0, 2.4)
3′	78.1	78.4	4.21 dd (8.8, 8.3)	78.40	4.22 dd (8.3, 8.6)	78.16	3.27 dd (8.0, 8.9)
4′	71.4	71.4	4.21 dd (8.3, 9.3)	71.48	4.22 dd (8.3, 8.6)	71.30	3.41 d (8.8)
5′	78.1	78.5	3.91 ddd (9.3, 2.4, 5.2)	78.59	3.94 d (2.6)	78.55	3.37 dd (8.8, 9.3)
6′	62.7	62.7	4.44 dd (11.0, 2.4) 4.28 dd (12, 5)	62.74	4.48 d (11.3) 4.29 s br	62.45	3.85 d (12.0, 2.4) 3.72 dd (12.0, 5.0)

Table 1: ¹³C- and ¹H-NMR spectral data of simmondsin (**1a**), ehretioside A1 and compound **1** [125/500 MHz, δ (ppm), J (Hz)]

the high chemical shift of connected carbon $(\delta_c 161.57, C-4')$. Comparison of MS and NMR spectra with those of reported data [4] confirmed the structure of **2** as 4',5,7-trihydroxyflavone-3-O- β -D-glucopyranoside

(astragalin, kaempferol-3-O- β -D-glucopyranoside). Astragalin was found for the first time from *Astragalus* species and showed strong antibacterial and anticandidal activity [4].

The molecular formula $(C_{18}H_{16}O_8)$ of **3** was established on the basis of ESI-MS spectrum $(m/z 383 \text{ [M+Na]}^+, 361 \text{ [M+H]}^+)$. The ¹³C-NMR and DEPT spectra showed signals for 18 carbons, including one carbonyl, and 12 aromatic carbons.

The structure of **3** was confirmed as 3-(3,4dihydroxyphenyl)-2-hydroxypropanoic acid 2-O-(3,4-dihydroxyphenyl-2*E*-cinnamoyl) (rosmarinic acid) by comparison of ¹H- and ¹³C-NMR spectral data with the literature [5]. Rosmarinic acid was isolated for the first time from *Rosmarinus officinalis*, and its novel butyl ester was found in *Isodon oresbius* [6].

Compound 4 was obtained as white amorphous powder and its spectra data closely resembled to those of 3. The molecular formula of 4 was established as $C_{19}H_{18}O_8$ by peaks at m/z397 $[M+Na]^+$ and 375 $[M+H]^+$, with one methyl group more than 3. This was confirmed by signals $\delta_{\rm H}$ 3.72 and $\delta_{\rm C}$ 52.69 of methyl ester group in NMR spectra. The structure of 4 was elucidated as 3-(3,4-dihydroxyphenyl)-2hydroxypropanoic acid 2-0-(3,4dihydroxyphenyl-2E-cinnamoyl) methyl ester (methyl rosmarinate). Rosmarinic acid and its

methyl ester were isolated from *E. philippinensis* and showed strong anti-histamine release, anti-HIV, antibacterial, antifungal effects, plant-growth inhibitory and anti-inflammatory activity [2].

Acknowledgements: We thank Dr. Vu Xuan Phuong, Institute of Ecology and Natural Resources, VAST Vietnam for identification of plant material; Dr. Juergen Schmidt, Institute of Plant Biochemistry, Halle/S, Germany for the mass spectra.

REFERENCES

- Pham Hoang Ho. An Illustrated Flora of Vietnam, Youth publishing House, Vol. II, P. 804 (2000).
- Lourder R. Simpol, Hideaki Otsuka, Kasuhiro Ohtani, Ryoji Kasai, Kauo Yamasaki. Phytochemistry, 36 (1), 91 - 95 (1994).
- N. Chi Da, K. Yamada, S. Ogawa. J. Chem. Soc. Perkin Trans., 1, 1131 - 1137 (1992).
- Nobutoshi Tanaka, Toshiko Satake, Akira Takanashi, Michiko Mochizuko, Takao Murakani, Yashuhisa Saiki, Zin-Zhen Yang, Chiu-Ming Chen. Chem. Pharm. Bull., 30, 3640 - 3646 (1982).
- A. J. M. Jassen, A. J. H. Klunder, B. Zwanenburg. Tetrahedron, 47, 7645 - 7662 (1991).
- H. Huang, Q. R. Chao, R. X. Tan, H. D. Sun, D. C. Wang. J. Zhao S. X., 1999. Planta Medica, 65, 92 - 93 (1999).