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ABSTRACT

New optically active bis-quaternary ammonium salts were synthesized and applied to
catalytic asymmtric alkylation of tert-butyl glycinate benzophenone Schiff base to provide a chiral

a-amino acid derivative with 54% ee.

Stereoselective synthesis of both nature and
non-natural o-amino acids is an important
subject in the field of synthetic and bioorganic
chemistry. Asymmetric alkylation of glycine
ester benzophenone Schiff base using chiral
phase-transfer catalyst is a powerful method for
this purpose (figure 1) [1]. Recently, Maruoka
developed a series of chiral spiro ammonium
salts 1 as efficient phase-transfer catalysts for
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this asymmetric alkylation (figure 2) [2].
However, a large number of reaction steps were
required for the synthesis of catalysts 1. In this
paper, we desribe the design and concise
synthesis of novel optically active bis-
quaternary ammonium salts 2 (figure 2) and
their application to catalytic asymmetric
alkylation to provide a-amino acid derivatives.

R-X
Ph 0
Ph>= N Hon
|
:*1 o % L=

Figure I: Approach to the synthesis of chiral o.-amono acids

Synthesis of (S,5,5)-2 was started from
commercially available (S)-BINOL as shown in
scheme 1 [3 - 7]. (S)-BINOL was converted to
(S)-2,2’-bis(bromomethyl)-1,1’-binaphthyl[(S)-
3] according to known procedure [8]. Azidation
of (5)-3 with sodium azide and following Pb-
catalyzed hydrogenation provided (5)-2,2’-
bis(aminomethyl)-1,1’-binaphthyl [(S)-5] with
quantitative yield. The reaction of (S)-5 with 2

equivalent of (S)-3 gave (S,5,5)-6 with 64%
yield, and then treatment of (S,5,5)-6 with
benzyl bromide afforded desired  bis-
quanternary ammonium salts (5,5,5)-2 with 83%
yield. (S,5,5)-2 was also synthesized with (S5)-§
and (R)-3 by the same procedure.

Next, we applied new phase-transfer
catalysts 2 to asymmetric alkylation of 7 (table
1). The reaction of 7 with 1.2 equivalent of
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benzyl bromide in the presence of 2 mol% of
(§,S,5)-2 under basic conditions afforded 55%
yield of desired alkylated product 8 with 42% ee
(entry 2) whereas the use of (§,5,5)-2 showed
poor asymmetric induction (entry 1). The
reaction under lower temperature increased
enantioselectivity to 54% ee (entry 3).

In conclusion, we have developed new optically
active bis-quaternary ammonium salts 2. Asymmetric
benzylation of 7 using (5,5,5)-2 as a phase-transfer
catalyst provided o-amino acid derivatives 8 with 54%
ee. Further improvement of catalysts structure as well
as optimization of the reaction conditions are
undergoing.

Figure 2: Structure of chiral quaternary ammonium salts
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Scheme 1: Synthesis of bis-quaternary ammonium salts (S,S,5)-2
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Table I: Asymetric alkylation with phase-transfer catalyst 2 *

T

Ph Ph Br (1.2 equiv) Ph

> N 0 catalyst
—_—
Ph OtBu

Toluene-CH,Cl,

o
Ph >:N\/Lou3u

50%aq,KOH Ph"
Entry | Catalyst (mol%) Temp., °C Time, h %Yield Yee’(config.)
1 (S,R,R)-1(2) 0 0.5 47 2(S)
2 (S,5,9)-1(2)
3 (S,5,9)-1(10) S20 3 45 54

(a) All reactions were carried out with 1.2 equiv. of benzyl bromide

(b) Isolated yield
(c) Determined by HPLC analysis.
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