TRITERPENES FROM THE ROOTS OF CODONOPSIS PILOSULA

Received 30 October 2007

TRINH THI THUY¹, TRAN VAN SUNG¹, KATRIN FRANK² AND LUDGER WESSJOHANN²

¹Institute of Chemistry, Vietnam Academy of Science and Technology

²Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany

SUMMARY

From the roots of Codonopsis pilosula (Franch) Nannf (Campanulaceae) five triterpenoids: taraxerol, taraxeryl acetate, 14- α -taraxeran-3-one and D:B-friedoolean-5-ene-3- β -ol as well as α -spinasterone were isolated. Their structures have been identified by MS, ¹H-, ¹³C-NMR spectroscopy and comparison with reported data.

I - INTRODUCTION

Codonopsis pilosula (Franch) Nannf is one of the most famous traditional medicine and sometimes as cheaper substitute like ginseng in Chinese and Vietnamese drugs. It has been used for a long time and still being used widely today as a remedy for appetite, psychoneurosis, fatigue, dyspepsia and possessing adaptogenic, anti-stress properties [1]. Our previous study on the roots of C. pilosula (Franch) Nannf has led to the isolation and structural identification of lobetyol, 5-hydroxymethyl-2-furandehyde as well as bis-(2-ethylhexyl)-phthalate [2]. In this paper we report the isolation and structural elucidation of four triterpenoids, taraxerol (1), taraxeryl acetate (2), $14-\alpha$ -taraxeran-3-one (3taraxeranone, 3), D:B-friedoolean-5-en-3- α -ol (4) and α -spinasterone (5).

II - EXPERIMENT

1. General

Optical rotation $[\alpha]_D$: Digital Polarimeter Jasco DIP 1000. EI-MS: ADM 402, 70 eV, Finnigan TSQ 700. NMR: VARIAN 300 spectrometer at 300 MHz (¹H) and 75.5 MHz

(¹³C, ¹³C-APT). Chemical shifts were referenced to internal TMS ($\delta = 0$, ¹H) and CDCl₃ ($\delta = 77.0$, ¹³C). CC: Silica gel 60, 0.06 - 0.20 mm (Merck) for the first column, silica gel 60, 40-63 µm (Merck) for the following columns. TLC: Silica gel 60 F-254 (Merck).

2. Plant material

The roots of *C. pilosula* were bought in Hanoi market, Vietnam in May 2005. The species was identified by Dr. Ngo Van Trai, Institute of Materia Medica, Hanoi. A voucher specimen (Nr. 1) is deposited in the Institute of Chemistry, VAST, Hanoi.

3. Extraction and isolation

The ground and dried roots of *C. pilosula* (2.4 kg) were extracted four time with MeOH (95%) at room temperature. MeOH was evaporated *in vacuo*, and the aq. solution (1.25 kg) was partitioned with *n*-hexane followed by EtOAc and n-BuOH (each four time), giving 45.0 g, 21.0 g and 29.3 g extracts, respectively. The n-hexane extract was separated on silica gel using n-hexane-CHCl₃ (20:80 \rightarrow 90:10) and then CHCl₃-MeOH (98:2 \rightarrow 90:10) to afford 24 fractions (F1-F24, 150 ml/Fr.). Compounds 1-5 were further purified by CC on silica gel or

crystallization.

Н	2	5	5 [8]	
1	1.39 <i>m</i> 1.92 <i>dd</i> (14.6; 3.1)	1.46 <i>m</i> ; 2.13 <i>ddd</i> (6.1;	1.47 <i>m</i> ; 2.12 <i>ddd</i> (6.1;	
		14.6; 14.6)	14.6; 14.6)	
2	1.66 <i>m</i> ; 2.02 <i>m</i>	2.28 br <i>d</i> (14.5)	2.28 br <i>d</i> (15)	
3	4.45 <i>dd</i> (10.3; 6.2)	-	-	
4	-	2.24 m	2.23 m	
5	1.33 m	1.80 <i>m</i>	1.81 m	
6	1.43 <i>m</i> , 1.46 <i>m</i>	1.83 <i>m</i>	1.82 <i>m</i>	
7	1.29 <i>m</i> ,1.62 <i>m</i>	5.18 m	5.18 m	
9	1.54 <i>m</i>	1.77 <i>m</i>	1.76 <i>m</i>	
11	1.42-1.46 <i>m</i>	1.56, 1.75 <i>m</i>	1.55, 1.75 <i>m</i>	
12	0.93 - 1.33 <i>m</i>	1.27, 2.04	1.27, 2.04 <i>m</i>	
14	-	1.83 m	1.83 m	
15	5.53 dd (7.0; 3.2)	1.39 m, 1.50 m	1.40 m, 1.52 m	
16	1.65 <i>m</i> , 2.01 <i>m</i>	1.29 m, 1.77 m	1.29 m, 1.67 m	
17	-	1.30 <i>m</i>	1.30 <i>m</i>	
18	1.03 <i>m</i>	0.58 s	0.58 s	
19	1.43 <i>m</i> , 2.05 <i>m</i>	1.02 <i>s</i>	1.02 s	
20	-	2.04 <i>m</i>	2.05 m	
21	1.32 - 1.42 <i>m</i>	1.03 <i>d</i> (6.8)	1.03 <i>d</i> (6.7)	
22	1.32 - 1.42 <i>m</i>	5.13 dd (8.4; 15.0)	5.16 dd (8.5; 15.2)	
23	0.95 s	5.02 <i>dd</i> (8.5; 15.0)	5.02 <i>dd</i> (8.8; 15.3)	
24	0.82 s	1.55 m	1.56 m	
25	0.91 s	1.56 m	1.57 m	
26	1.09 s	0.82 <i>d</i> (6.2)	0.82 <i>d</i> (6.1)	
27	0.88 s	0.84 <i>d</i> (6.4)	0.84 <i>d</i> (6.7)	
28	0.86 s	1.19 <i>m</i> ; 1.41 <i>m</i>	1.18 m; 1.41 m	
29	0.95 s	0.81 <i>t</i> (6.4)	0.81 <i>t</i> (7.3)	
30	0.91 s	-	-	
CO <u>CH</u> ₃	2.04 s	-	-	

Table 1: ¹H-NMR data of taraxeryl acetate (2) and α -spinasterone (5) (300 MHz, δ ppm, CDCl₃, *J* in Hz)

С	1*	2	3	4	5
1	38.56	37.73	38.31	18.30	38.79
2	26.60	28.86	28.22	27.88	38.15
3	78.65	80.98	212.96	76.32	211.68
4	38.83	39.01	42.16	40.86	44.26
5	55.39	55.63	53.08	141.45	42.88
6	18.68	18.76	18.30	121.96	30.10
7	35.63	35.15	35.36	23.71	116.88
8	38.55	37.92	39.28	47.45	139.33
9	48.56	48.76	42.79	34.88	48.85
10	37.81	37.72	37.45	49.70	34.44
11	17.39	17.59	18.30	34.65	21.76
12	36.51	35.83	35.65	30.41	39.35
13	37.54	37.41	36.03	39.33	43.37
14	157.76	157.78	58.19	37.87	55.02
15	116.56	116.84	30.03	32.12	23.02
16	37.40	36.70	32.79	36.07	28.55
17	37.62	37.58	39.70	30.15	55.85
18	49.68	49.20	59.44	43.08	11.98
19	41.17	41.23	41.55	35.12	12.34
20	28.64	28.86	28.22	28.32	40.86
21	34.95	33.72	32.44	33.16	21.76
22	33.55	33.13	30.54	38.99	137.92
23	27.75	28.04	18.74	29.02	129.37
24	15.33	15.59	6.93	25.53	51.25
25	15.33	16.67	14.73	16.30	31.91
26	29.63	29.99	18.74	19.70	19.06
27	25.76	25.99	32.13	18.52	21.45
28	29.73	29.89	31.83	32.10	25.45
29	33.13	33.41	35.07	34.59	12.34
30	21.15	21.42	20.33	32.47	-
<u>C</u> =O	-	170.82	-	-	-
CO <u>CH</u> ₃	-	21.36	-	-	-

Table 2: ¹³C-NMR data of compounds **1-5** (CDCl₃, 75.5 MHz, δppm)

* CDCl₃:CD₃OD (95:5)

a) Taraxerol (1)

Fractions 12-13 (Fr.12-14, 1.35g) were separated on silica gel, eluted with hexane-

EtOAc (90:10) and then crystallization to give 360 mg (0.0150 %). $[\alpha]^{24}{}_{\rm D}$ -22^o (*c* 1.0, CHCl₃). EI-MS 70 eV, *m*/*z* (rel. int.): 426 [M]⁺ (16), 411

[M-15]⁺ (14), 302 (52), 287 (40), 218 (37), 205 (38), 204 (100), 189 (30), 135 (19), 121 (24), 107 (22), 95 (23);). ¹H-NMR (CDCl₃, 300 MHz, δ ppm): 0.97 (Me-23), 0.82 (Me-24), 0.95 (Me-25), 1.09 (Me-26), 0.91 (Me-27), 0.80 (Me-28), 0.93 (Me-29), 0.91 (Me-30). ¹³C-NMR (125 MHz, CDCl₃+CD₃OD): data see table 2.

b) Taraxeryl acetate (2)

Compound **2** was isolated from Fr. 4+5 by CC (silica gel, *n*-hexane-EtOAC 98:2). White needles from EtOAc, yield 60 mg (0.0032 %). ESI-MS (m/z): 491 [M+Na]⁺ (C₃₂H₅₂O₂). EI-MS, 70 eV, m/z (rel. int.): 468 [M]⁺ (41), 453 (24), 408 (20), 344 (60), 329 (26), 269 (24), 218 (40), 204 (100), 189 (30), 135 (18), 121 (17), 109 (21) 107 (10), 95 (24). ¹H- and ¹³C-NMR data see Table 1 and 2.

c) 3-Taraxeranone (14- α -taraxeran-3-one, 3)

Compound **3** was isolated from Fr.10 by CC (silica gel, *n*-hexane-EtOAC-CHCl₃, 90:10:1). White needles from EtOAc, yield 56mg (0.0023 %). $[\alpha]^{24}_{D}$ — 45 (*c* 2, CHCl₃, lit. [5] + 31°). ESI-MS, *m/z*: 449 [M+Na]⁺ (C₃₀H₅₀O). EI-MS, 70 eV, *m/z* (rel. int.): 426 [M]⁺ (87), 411 (29), 341 (14), 302 (32), 273 (63), 205 (54), 191 (17), 179 (46), 163 (51), 123 (100), 109 (77), 95 (82), 69 (47); ¹H-NMR (CDCl₃, 300 MHz, δ ppm): 1.05 (Me-23), 1.00 (9H, Me-24, Me-25, Me-29), 1.18 (Me-26), 0.87 (Me-27), 0.88 (Me-28), 0.95 (Me-30). ¹³C-NMR data see table 2.

d) D:B-friedoolean-5-ene-3-β-ol (4)

Compound **4** was isolated from Fr.10 and purified by CC [silica gel, n-hexane-EtOAc-CHCl₃ (90:10:1)]. Powder from EtOAc, yield 28 mg (0.0012 %). EI-MS, 70 eV, m/z (rel. int.): 426 [M]⁺ (18), 409 (30), 274 (C₂₀H₃₄, 100), 259 (92), 205 (C₁₄H₂₁O, 47), 137 (C₁₀H₁₇, 30), 134 (45), 109 (46), 95 (42), 81 (23); ¹H-, ¹³C-NMR data see Table 1 and 2.

α-Spinasterone [(22E)-5α-stigmasta-7,22diene-3-one (5)]

Compound **5** was isolated from Fr.10 and purified by CC [silica gel, n-hexane-EtOAC-CHCl₃ (90:10:5)]. White needles from EtOAc, yield 45 mg (0.0019 %). EI-MS 70 eV, m/z (rel. int.): 410 [M]⁺ (56), 397 (32), 395 [M-Me]⁺, 367

 $[M-C_{3}H_{7}]^{+}$ (52), 298 $[M-C_{8}H_{16}]^{+}$ (32), 271, 269 (loose of the side chain, 75), 257 (13), 244 (38), 229 (77), 95 (40), 83 (22), 55 (24). ¹³C-NMR data see table 2.

III - RESULTS AND DISCUSSION

The residue of an ethanol extract of *C. pilosula* was partitioned with n-hexane, EtOAc, *n*-BuOH, successively. The n-hexane extract, after evaporation of solvent was chromatographed on column over silica gel and then crystallization to afford compounds 1-5. Compounds 1-5 showed no fluorescence under UV light with λ_{max} 254 and 366 nm.

The EI-MS spectrum of 1 gave a mol peak at m/z 426 [M]⁺, corresponding to the molecular formula C₃₀H₅₀O. The APT and ¹³C-NMR spectra showed the presence of 30 carbons (CH₃x8, CH_2x10 , CHx5, Cqx7), suggested that 1 has a triterpene skeleton. This was further confirmed by the signals of 8 tertiary methyl signals in the ¹H-NMR spectrum. One double bond was confirmed by olephinic methine signal at $\delta_{\rm H}$ 5.53 (*dd*, J = 7.0; 3.2 Hz) and $\delta_{\rm C}$ 157.76 (C-14), 116.56 (C-15). The structure of 1 was identified as taraxerol (14-taraxeren-3 β -ol) by comparison of its ¹H- and ¹³C-NMR spectra (Table 1) with reported data [3, 4]. Taraxerol showed antiulcer activity and is a cancer chemopreventive agent. It was isolated for the first time from Taraxacum officinale and then frequently found in other plants (Rhododendron spec., Euphorbia spec.) [3, 4].

Compound **2** was obtained as white needles from *n*-hexane extract using column chromatography on silica gel. The EI-MS spectrum gave a mol peak at m/z 468 [M]⁺ (41), corresponding to the molecular formula $C_{32}H_{52}O_2$. The ¹H- and ¹³C-NMR spectral data were similar to those of **1**, except the presence of an acetyl group (δ_H 2.04 and δ_C 170.28, 21.36), therefore **2** was identified as taraxeryl acetate. Its ¹H- and ¹³C-NMR spectral data were identical to reported data [4].

Compound 3 was obtained as white needles. The molecular formula of 3 was established as $C_{30}H_{50}O$ by combination of ¹³C-NMR and mol peak at m/z 426 [M]⁺(87). The ¹³C-NMR spectrum showed the presence of a keton group ($\delta_{\rm C}$ 212.96) and an absence of olephinic signals,

The EI-MS spectrum of 4 gave a mol peak at m/z 426 [M]⁺(18), indicating a same molecular formula ($C_{30}H_{50}O$) as **1**. The APT and ¹³C-NMR spectra showed the presence of 30 carbons (CH₃x8, CH₂x10, CHx5, Cqx7). In comparison of the ¹H- and ¹³C-NMR spectral data (table 2) with reported data [6], the structure of 4 was identified as D: B-friedoolean-5-ene-3- β -ol, which was isolated for the first time from Securinega tinctorena and its isomer (D:Bfriedoolean-5-ene-3- α -ol) was found in Euphorbia royleana (Euphorbiaceae) [6, 7]. D:B-friedoolean-5-ene-3- β -ol is a relatively rare triterpene alcohol, which can be an intermediate in the biosynthesis of friedeline.

The molecular formula of **5** ($C_{29}H_{46}O$) was determined by combination of molecular ion peak at m/z 410 [M]⁺ in EI-MS as well as its ¹³C-NMR spectra. The ¹H-NMR spectrum displayed

suggesting that **3** is taraxeranone. In combination of its MS and NMR spectra, the structure of **3** was determined as 14α -taraxeran-3-one (3-taraxeranone) [5].

two methyl doublets at $\delta_{\rm H}$ 0.82, 0.84 (each 3H, d, J = 6.4 Hz), corresponding to one isopropyl group. The mass spectrum showed a fragment at m/z 269 (loss of the side chain) and fragments were common to related steroids, suggested that 5 is a stigmasta-diene skeleton. This was further confirmed by the presence of three olephinic methine carbons at $\delta_{\rm C}$ 116.88 (C-7), 137.92 (C-22), 129.37 (C-23) and quaternary carbon at $\delta_{\rm C}$ 139.33 (C-8) in the ¹³C-NMR spectrum. The ¹H-NMR spectrum showed the presence of two olephinic protons at $\delta_{\rm H}$ 5.13, 5.02 with trans configuration (J = 15.0 Hz). Combination of the MS, ¹H- and ¹³C-NMR spectra (tables 1&2), the structure of 5 was identified as $(22E)-5\alpha$ stigmasta-7,22-diene-3-one (α -spinasterone), which was isolated from the heartwood of Albizzia julibrissin and the bark of Acacia concinna [8].

The presence of taraxerol as main component and its derivatives is a chemical support for the taxonomy of *Codonopsis* species used in Vietnamese traditional medicine.

Acknowledgements: We thank BMBF, Germany, for financial support in form of a project. We are indebted Dr. Ngo Van Trai, Institute of Materia Medica, Hanoi for the identification of the plant material.

REFERENCES

- Heidrun Noerr, H. Wagner. Planta Medica, 60, 494 - 5 (1994).
- Trinh Thi Thuy, Tran Van Sung, L. Wessjohann. Vietnam Journal of Chemistry 41 (4), 119 - 123 (2003).

- 3. Atta UR-Rahman, Nighat Sultana, Parzana Akhter, Parzana Nighat, M. Iqbal Choudary. Nat. Prod. Lett. **10**, 249-256 (1997).
- 4. Damon R. Billodeaux, Gloria A. Benavides. Acta Cryst. **55**, 2129 - 2131 (1999).
- 5. Yueh-Hsiung Kuo, Pei-Hung Chu. Journal of the Chinese Chemical Society **49**, 269 274 (2002).
- L. Carvalho, J. Seita. Nat. Prod. Lett. 2 (1), 57 - 60 (1993).
- 7. Nobuko Sakurai, Yoshikatsu Yaguchi, Takao Inoue. Phytochemistry **26** (1), 217 -219 (1987).
- Toshihiro Akihisa, Yumiko Kimura, Takaaki Tai, Koiki Arai. Chem. Pharm. Bull. 47 (8), 1161 - 1163 (1999).