Lignans isolated from the ethyl acetate extract of Knema pachycarpa fruit

To Hai Tung¹, Cao Thi Hue¹, Tran Huu Giap^{1,2}, Ha Thi Thoa¹, Nguyen Anh Dung¹, Nguyen Thi Minh Hang^{1,2}, Nguyen Van Hung^{1,2}, Le Nguyen Thanh^{1,2,*}

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST)

²Graduate University of Science and Technology, VAST

Received 28 September 2016; Accepted for publication 28 August 2017

Abstract

Knema is a genus of tropical evergreen trees of the family Myristicaceae found in South East Asian countries such as Vietnam, Thailand, and Malaysia. In this paper, four lignans, (+)-pinoresinol (1),(+) epi-pinoresinol (2), piperitol (3), and pluviatilol (4), were isolated from the ethyl acetate extract of the fruit of *Knema pachycarpa*, an indigenus tree in Vietnam. The chemical structures were determined by spectroscopic data and comparison with the reported literature. These compounds were isolated from *Knema* genus for the first time.

Keywords. Knema pachycarpa de Wilde, (+)-Pinoresinol, (+)-Epi-pinoresinol, Piperitol, Pluviatilol.

1. INTRODUCTION

Knema is a genus of tropical evergreen trees of the family Myristicaceae found in South East Asian countries such as Vietnam, Thailand, and Malaysia. At least 13 species are found in Vietnam, where they are commonly known as "mau cho" referring to the red resin secreted in the bark [1]. Traditionally, *Knema* species have been used to treat sore, pimples, cancers and skin diseases. The genus *Knema* contains variety of natural compounds including cardanols, flavonoids, acetophenones, lignans, acylphloroglucinols, acylresorcinols, and anacardic acids [2-4].

Knema pachycarpa de Wilde "Mau cho trai day" is an indigenus tree in Vietnam and the chemical study of this Knema species has not been reported. In this paper, we report the isolation of 4 lignan compounds from the ethyl acetate extract of K. pachycarpa fruit including (+)-pinoresinol (1), epipinoresinol (2), piperitol (3), and pluviatilol (4). Their chemical structures were determined by spectroscopic data and comparison with the reported literature.

2. EXPERIMENTAL

2.1. General Experimental Procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz)

spectra were recorded by a Bruker AM500 FT-NMR spectrometer using TMS as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1260 series single quadrupole LC/MS system. Column chromatography (CC) was performed on silica gel (Merck, 230-400 mesh) or Sephadex LH-20. Thin layer chromatography used precoated silica gel plates (Merck 60 F_{254}). Compounds were visualized by spraying with Ce-Mo stain.

2.2. Plant material

The fruit of *Knema pachycarpa* de Wilde was collected at A-Luoi, Hue city, Viet Nam, in 2015 and identified by Dr. Nguyen The Cuong, Institute of Ecology and Biological Resources, VAST. A voucher specimen (VN-1527) was deposited at the Institute of Marine Biochemistry, VAST.

2.3. Extraction and Isolation

The fruits of *K. pachycarpa* were sliced into small pieces and dried. The material (380 g) was extracted with MeOH at room temperature (3 times, 1 day/time). The extracts were combined and evaporated *in vacuo* and the residue was suspended in H_2O . The suspension was successively partitioned with *n*-hexane and ethyl acetate to give *n*-hexane

residue (105 g) and ethyl acetate residue (2.3 g).

The ethyl acetate residue (2.28 g) was subjected to column chromatography on silica gel, eluted using gradient solvents with *n*-hexane-ethyl acetate (50:1 to 0:1, v/v) to afford 5 fractions (E1-E5).

The E2 fraction (702 mg) was separated into 3 sub-fractions (E2.1-E2.3) using CC on Sephadex eluted with MeOH. The E2.2 sub-fraction (618 mg) was chromatographed on silica gel column eluted with CH₂Cl₂/MeOH 98/2 (v/v) to give 3 subfractions E2.2.1-E2.2.3. Purification of fraction E2.2.1 (230 mg) with silica gel CC eluted with nhexane-ethyl acetate 85:15 (v/v)furnished compound 1 (24 mg) and compound 2 (11 mg). The E1 fraction (400 mg) was also fractionated by column chromatography on Sephadex eluted with MeOH to give 3 sub-fractions (E1.1-E1.3). The E1.2 sub-fraction (68.5 mg) was purified on silica gel column using *n*-hexane-ethyl acetate 85:15 (v/v) to yield compound 3 (16.4 mg) and compound 4 (2.6 mg).

(+)-**Pinoresinol** (1): white solid, $[\alpha]^{25}{}_{\rm D} = +75.0^{\circ}$ (CHCl₃, c = 0.06), mp: 115-116 °C. ESI-MS: m/z359 $[M+H]^+$, molecular formula $C_{20}H_{22}O_6$ (M = 358). ¹H-NMR and ¹³C-NMR data, see table 1.

(+)-**Epipinoresinol** (2): white solid, $[\alpha]^{25}_{D} =$ +113.2° (CHCl₃, c = 0.30), mp: 133-135 °C. ESI-MS: m/z 359 [M+H]⁺, molecular formula C₂₀H₂₂O₆ (M = 358). ¹H-NMR and ¹³C-NMR data, see table 1.

Piperitol (3): clear oil, $[\alpha]^{25}_{D} = -63.6^{\circ}$ (CHCl₃, *c*

= 0.25). ESI-MS: m/z 357 [M+H]⁺, molecular formula $C_{20}H_{20}O_6$ (M = 356). ¹H-NMR and ¹³C-NMR data, see table 2.

Pluviatilol (4): white solid, $[\alpha]_{D}^{25} = +36.6^{\circ}$ (CHCl₃, c = 0.3), mp: 160-161 °C. ESI-MS: m/z 357 [M+H]⁺, molecular formula $C_{20}H_{20}O_6$ (M = 356). ¹H-NMR and ¹³C-NMR data, see table 2.

3. RESULTS AND DISCUSSION

Compound 1 was obtained as a white solid. The ESI-MS showed a molecular ion peak m/z 359 $[M+H]^+$, indicating that a molecular formula of **1** is $C_{20}H_{22}O_6$. In the ¹³C-NMR spectra, there were 10 carbon signals suggesting that structure of 1 is symmetric. The ¹H NMR spectrum revealed the signals ABX spin systems in the phenyl ring [$\delta_{\rm H}$: 6.90 (1H, d, J = 2.5 Hz), 6.87 (1H, d, J = 8.5 Hz), 6.81 (1H, dd, J = 2.0 Hz, J = 8.0 Hz)] with a methoxy and hydroxyl group signals at $\delta_{\rm H}$ 3.89 (s, 3H) and 5.68 (br s, 1H), respectively. In addition, the signals of bis-lignan furan ring were found at δ_{H} 4.73 (1H, d, 4.5 Hz), 4.26 (1H, dd, J = 9 Hz; J = 7 Hz), 3.86 (1H, dd, J = 9 Hz; J = 3.5 Hz) and 3.09 (1H, m). The ¹³C-NMR showed the signals of aromatic carbons at δ_{C} 146.7 (C-4'), 145.2 (C-3'), 132.9 (C-1'), 118.9 (C-6'), 114.2 (C-5'), 108.6 (C-2'); a methoxy group at $\delta_{\rm C}$ 55.96 and *bis*-lignan furan ring at δ_{C} 85.8 (C-7,7'), 54.1 (C-8,8') and 71.6 (C-9,9'). Analytical NMR, MS and optical data indicated that the structure of compound 1 is (+)pinoresinol. The NMR data is in good agreement with those in the reported literature [5].

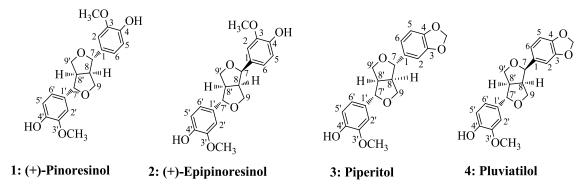


Fig. 1: Chemical structures of isolated lignans 1-4

Compound **2** was isolated as a white powder, mp 133-135 °C. The ESI-MS (molecular ion peak m/z 359) and NMR (20 carbon signals, 22 protons) data indicated that a molecular formula of **2** is $C_{20}H_{22}O_6$, the same as compound **1**, pinoresinol. The ¹H NMR spectrum showed typical signals of two ABX systems [δ_H 6.95 (d, 1H, J = 1.0 Hz), 6.91 (d, 1H, J

= 1.5 Hz), 6.88 (d, 1H, J = 8.0 Hz), 6.90 (d, 1H, J = 8.5 Hz), 6.83 (dd, 1H, J = 8.5 Hz, 2.0 Hz), 6.77 (dd, 1H, J = 8.0 Hz, 1.0 Hz)] with two methoxy groups at 3.91 (s, 3H), 3.90 (s, 3H). The remaining protons signals [$\delta_{\rm H}$ 4.86 (d, 1H, J = 5.5 Hz), 4.43 (d, 1H, J = 7.0 Hz), 4.12 (d, 1H, J = 9.5 Hz), 3.86-3.83 (m, 2H), 3.35-3.30 (m, 2H), 2.92-2.88 (m, 1H)] were

VJC, 55(4), 2017

analysed and assigned as epi-furofuran ring using COSY spectrum. The ¹³C-NMR and DEPT spectra of **2** showed the signals of 20 carbons including a 12 aromatic carbon signals [$\delta_{\rm C}$ 146.7, 146.4, 145.3, 144.4, 133.0, 130.3, 119.1, 118.4, 114.2, 114.2, 108.5, and 108.4], 2 methoxy group signals [$\delta_{\rm C}$

56.01 and 55.96] and six carbon signals of epifurofuran ring at δ_C 87.75, 82.13, 71.01, 69.69, 56.0, 55.9, 54.4 and 50.1. Therefore, compound **2** was identified as (+) epi-pinoresinol, an isomer of pinoresinol. The NMR data are nearly identical to those of reported (+) epi-pinoresinol [6].

1						2			
			${}^{\scriptscriptstyle @} \delta_{ m H}$	${}^{\mathrm{b,c}} \boldsymbol{\delta}_{\mathbf{H}}$		$^{\mathrm{a,b}}\delta_{\mathrm{C}}$	${}^{\mathrm{b,c}}\delta_{\mathrm{H}}$	$^{d}\delta_{ m H}$	
C	$^{@}\delta_{\mathrm{C}}$	${}^{\mathrm{a,b}}\delta_{\mathrm{C}}$	(mult., $J = Hz$)	(mult., $J = Hz$)	${}^{d}\delta_{\mathrm{C}}$		(mult.,	(mult.,	
							J = Hz)	J = Hz)	
1	132.8	132.9	-	-	130.8	130.3	-	-	
2	108.6	108.6	6.87, d (1.6)	6.90, d (2.0)	108.9	108.4	6.95, d (1.0)	6.97-6.76, m	
3	146.5	146.7	-	-	146.9	146.4	-	-	
4	145.1	145.2	-	-	145.1	144.4	-	-	
5	114.2	114.2	6.86, d (8.0)	6.87, d (8.5)	114.7	114.2	6.88, d (8.0)	6.97-6.76, m	
6	118.9	118.9	6.79, dd (8.0, 1.6)	6.81, dd (8.0, 2.0)	118.9	118.4	6.83, dd (8.5, 2.0)	6.97-6.76, m	
7	85.8	85.8	4.72, d (4.4)	4.73, d (4.5)	82.6	82.1	4.86, d (5.5)	4.86, d (5.0)	
8	54.2	54.1	3.08, m	3.09, m	55.0	54.4	2.92-288, m	2.94-287, m	
9a	71.6	71.6	4.23 dd (8.8, 6.8)	4.26, dd (9.0, 7.0)	70.2	69.6	3.86-3.83, m	3.89-3.80, m	
9b	, 110	, 110	3.88, dd (8.8, 3.6)	3.86, dd (9.0, 3.5)	/ 0.1	0,10	3.35-3.30, m	3.37-3.23, m	
1'	132.8	132.9	-	-	133.5	133.0	-	-	
2'	108.6	108.6	6.87, d (1.6)	6.90, s	109.0	108.5	6.91, d (1.5)	6.97-6.76, m	
3'	146.5	146.7	-	-	147.2	146.7	-	-	
4'	145.1	145.2	-	-	145.8	145.3	-	-	
5'	114.2	114.2	6.86, d (8.0)	6.87, d (8.5)	114.7	114.2	6.90, d (8.5)	6.97-6.76, m	
6'	118.9	118.9	6.79, dd (8.0, 1.6)	6.81, dd (8.0, 2.0)	119.6	119.1	6.77, dd (8.0, 1.0)	6.97-6.76, m	
7'	85.8	85.8	4.72, d (4.4)	4.73, d (4.5)	88.2	87.7	4.43, d (7.0)	4.44, d (7.0)	
8'	54.2	54.1	3.08, m	3.09, m	50.6	50.1	3.35-3.30, m	3.37-3.23, m	
9a'			4.23 dd (8.8, 6.8)	4.26, dd (9.0, 7.0)			4.12, d (9.5)	4.12, d (9.3)	
9b'	71.6	71.6	3.88, dd (8.8, 3.6)	3.86, dd (9.0, 3.5)	71.5	71.0	3.86-3.83, m		
3-OCH ₃	55.9	55.9	3.83	3.89	56.5	56.0	3.91, s	3.91, s	
3 ⁻ OCH ₃	55.9	55.9	3.83	3.89	56.4	55.9	3.90, s	3.89, s	

Table 1: ¹H and ¹³C-NMR data of lignans 1-2 and reference compounds

^a125 MHz, ^bCDCl₃, ^c500 MHz, @: (+)-Pinoresinol [5], d: (+)-Epi-pinoresinol [6].

Compound **3** was isolated as an oil. The NMR features indicate that the structure of **3** is also a lignan. The ¹H NMR spectrum showed 6 signals of two ABX spin systems in the aromatic region [δ_{H} : 6.87-6.89 (2H, m), 6.85 (1H, d, J = 1.5 Hz), 6.79-6.82 (2H, m) and 6.77 (1H, s)], with a methylene

dioxide, hydroxyl and methoxy group signals at δ_H 5.94 (2H, s), 5.62 (1H, s) and 3.90 (3H, s), respectively. The signals of *bis*-lignan furan ring [δ_H 4.73 (dd, 4.5, 2.0, 2H), 4.26-4.21 (dd, 9.0, 6.5, 2H), 3.89-3.85 (dd, 9.0, 4.0, 2H) and 3.11-3.03 (2H, m)] are similar to those of pinoresinol. The ¹³C-NMR

showed 20 carbon including 12 signals of aromatic carbons, methylene dioxide group at $\delta_{\rm C}$ 101.07, a methoxy group at $\delta_{\rm C}$ 55.96 and *bis*-lignan furan ring at $\delta_{\rm C}$ 85.87, 85.83, 71.72, 71.68, 54.33 and 54.18. The ESI-MS showed a molecular ion peak *m/z* 357

 $[M+H]^+$, indicating that a molecular formula of **3** is $C_{20}H_{20}O_{6.}$ On the basis of the above spectral evidences, compound **3** is determined as piperitol. The analytical NMR data of **3** are in accordance with those published [7, 8].

		4				
C	$^{\#}\!\delta_{\mathrm{C}}$	${}^{\mathrm{a,b}} \delta_{\mathrm{C}}$	${}^{\mathrm{b,c}}\delta_{\mathrm{H}}$	$^{*} \delta_{ m H}$	$^{ m b,c}\delta_{ m H}$	$\delta_{ m H}$
С			(mult., $J = Hz$)	(mult., $J = Hz$)	(mult., $J = Hz$)	(mult., $J = Hz$)
1	135.1	135.1	-	-	-	-
2	106.5	106.5	6.77-6.89, m	6.76-6.93, m	6.77-6.94, m	6.81-6.89, m
3	148.0	147.9	-	-	-	-
4	146.8	146.7	-	-	-	-
5	108.2	108.1	6.77-6.89, m	6.76-6.93, m	6.77-6.94, m	6.81-6.89, m
6	119.3	119.3	6.77-6.89, m	6.76-6.93, m	6.77-6.94, m	6.81-6.89, m
7	85.9	85.8	4.73, dd (4.5, 2.0)	4.72, d (4.5)	4.85, d (4.5)	4.86, d (6.0)
8	54.3	54.3	3.03-3.11, m	2.85-3.25, m	3.31, m	3.32, m
9a	717	71.7	4.26, dd (9.0, 6.5)	4.26, dd (9.0, 6.5)	3.84, m	3.85, m
9b	71.7		3.89, dd (9.0, 4.0)	3.85, dd (9.0, 3.5)	3.30, m	3.32, m
1'	132.9	132.9	-	-	-	-
2'	108.7	108.6	6.77-6.89, m	6.76-6.93, m	6.77-6.94, m	6.81-6.89, m
3'	147.1	147.1	-	-	-	-
4'	145.3	145.2	-	-	-	-
5'	114.4	114.3	6.77-6.89, m	6.76-6.93, m	6.77-6.94, m	6.81-6.89, m
6'	119.0	119.0	6.77-6.89, m	6.76-6.93, m	6.77-6.94, m	6.81-6.89, m
7'	85.9	85.8	4.73, dd (4.5, 2.0)	4.72, d (4.5)	4.43, d (7.0)	4.42, d (7.5)
8'	54.2	54.1	3.03-3.11, m	2.85-3.25, m	2.88, m	2.91, m
9a'	71.7	71.6	4.26, dd (9.0, 6.5)	4.26, dd (9.0, 6.5)	4.11, d (9.5)	4.13, dd (9.5, 1.0)
9b'	71.7		3.89, dd (9.0, 4.0)	3.85, dd (9.0, 3.5)	3.86, m	3.85, dd (9.5, 6.5)
3 ⁻ OCH ₃	56.0	55.9	3.90, s	3.90, s	3.91, s	3.91, s
-OH			5.62, br s	5.75, br s	5.76, br s	
-OCH ₂ O-	101.1	101.0	5.94, s	5.96, s	5.94, s	5.97, s

Table 2: ¹H and ¹³C-NMR data of lignans **3-4** and reference compounds

^a125 MHz, ^bCDCl₃, ^c500 MHz, ^{*} δ_{H} : Piperitol [7], [#] δ_{C} : Piperitol [8], [&] δ_{H} : Pluviatilol [9].

Compound **4** was obtained as a white solid, mp 160-161 °C. In the NMR spectrum, the proton signals of aromatic ring are similar to those of compound **3** (piperitol) with 6 proton signals in the aromatic region, a methylene dioxide, a hydroxyl and a methoxy group at $\delta_{\rm H}$ 5.94 (2H, s), 5.76 (1H, s) and 3.91 (3H, s). However, the remaining protons signals are similar to those of compound **2**, epipinoresinol with 8 protons at $\delta_{\rm H}$ 4.85 (1H, d, J = 4.5 Hz), 4.43 (1H, d, J = 7.0 Hz), 4.11 (1H, d, J = 9.5

Hz), 3.86-3.84 (2H, m), 3.31-3.30 (2H, m), 2.88 (1H, m). Therefore, compound **4** was identified as pluviatilol, an isomer of piperitol. The ¹H-NMR data are in good agreement with the reported literature [9].

4. CONCLUSION

A phytochemical investigation of the ethyl acetate extract of the fruit of *K. pachycarpa* led to the

VJC, 55(4), 2017

isolation of four lignans including (+)-pinoresinol (1), (+) epi-pinoresinol (2), piperitol (3), and pluviatilol (4). Their chemical structures were elucidated by spectroscopic NMR and MS data. These lignans were isolated from *Knema* genus for the first time.

Acknowledgments. The authors gratefully acknowledge the supports of Institute of Marine Biochemistry under grant number HSB16-CS04.

REFERENCES

- 1. Pham Hoang Ho. *An illustrated flora of Vietnam*. 282-285, Youth Publisher (1999).
- M. N. Akhtar, K. W. Lam, F. Abas, Maulidiani, A. Ahmad, S. A. A. Shah, Atta-ur-Rahman, M. I. Choudhary, N. H. Lajis. New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorg. Med. Chem. Lett., 21, 4097-4103 (2011).
- 3. N. Rangkaew, R. Suttisri, M. Moriyasu, K. Kawanishi. A new acyclic diterpene and bioactive compounds from Knema glauca, Arch. Pharm. Res.,

Corresponding author: Le Nguyen Thanh

Lignans isolated from the ethyl acetate...

32, 685-692 (2009).

- M. J. T. G. Gonzalez, M. M. M.Pinto, A. Kijjoa, C. Anantachoke, W. Herz. *Stilbenes and other constituents of Knema austrosiamensis*. Phytochemistry, **32**, 433-438 (1993).
- H. P. Ji, W. Y. Seung, G. C. Jin, Y. L. Dae, S. K. Yong, and I. B. Nam. Lignans from silkworm droppings and their promotional activities on heme oxygenase-1 (HO-1), J. Korean Soc. Appl. Biol. Chem., 53(6), 734-739 (2010).
- 6. A. S. Nigel, C. D. B. Richard and B. Gordon. A versatile stereoselective synthesis of endo, exofurofuranones: Application to the enantioselective synthesis of furofuran lignans, J. Org. Chem., **69**, 122-129 (2004).
- Fumiko, Y. Shoji, K. Kimiko, N. Genichiro, O. Hikaru, N. Istuo. *Studies on Xanthoxylum spp. II. Constituents of the bark of Xanthoxylum piperitum DC.*, Chem. Pharm. Bull., 22, 2650-2655 (1974).
- 8. T. Hitoshi, N. Takeshi, I. Kazuhiko, and I. Kazuo. *A lignan* from *Actinodaphne longifolia*, Phytochemistry, **28**(**3**), 952-954 (1989).
- S. Z. Choi, M. C. Yang, S. U. Choi and K. R. Lee. Cytotoxic terpenes and lignans from the roots of Ainsliaea acerifolia, Arch. Pham. Res., 29(3), 203-208 (2006).

Institute of Marine Biochemistry Vietnam Academy of Science and Technology No. 18, Hoang Quoc Viet Road, Cau Giay Dist., Hanoi E-mail: lethanh@imbc.vast.vn; Telephone: 0983882573.