Diterpenoids from the wood of Podocarpus neriifolitus

Nguyen Hoang Sa¹, Nguyen Thanh Tam², Nguyen Thi Hoang Anh², Dao Duc Thien², Tran Duc Quan², Dinh Thi Phong³, Le Quoc Thang⁴, Tran Van Sung², Trinh Thi Thuy^{2*}

¹Nha Trang College of Education, 01 Nguyen Chanh road, Nhatrang, Khanhhoa

²Institute of Chemistry, Vietnam Academy of Science and Technology (VAST),

³Vietnam National Museum of Nature, VAST

⁴ Hue University's College of Educations, 34 Le Loi, Hue City

Received 22 July 2016; Accepted for publication 12 August 2016

Abstract

Using combined chromatographic methods, three known diterpenoids, inumakiol D (1), totarol (2) and totarol-19carboxylic acid (3) along with β -sitosterol and β -sitosterol glucoside were isolated from the ethyl acetate extract of the wood of *Podocarpus neriifolius* collected in Lam Dong province, Vietnam. Their structures were determined by MS, 1D-, 2D-NMR data analysis and comparison with published references. This is the first report of compounds 1-3 from this plant.

Keywords. Podocarpus neriifolius, diterpenoid, inumakiol D, totarol, totarol-19-carboxylic.

1. INTRODUCTION

Podocarpus neriifolius D. Don - "Thông tre lá dài"- (Podocarpaceae) is tree with straight and round trunk, growing up to 20 - 25m high. It was sparsely distributed in primary forest areas in northern Vietnam as Nghean, Hatinh, Yenbai, Tuyenquang provinces ... and found at an altitude of 2300 m in the Bidoup Nui Ba National Park, Lamdong province. A decoction of the leaves of this plant is used in Vietnamese traditional medicine for the treatment of rheumatism and joint pain [1]. There have been some reports on the presence of flavonoids, diterpenoids in this plant [2-4]. In our research on the chemical constituents of Pinales species, three diterpenoids, inumakiol D (1), totarol (2) and totarol-19-carboxylic acid (3) and along with β -sitosterol and β -sitosterol glucoside were isolated from the ethyl acetate extract of the wood of P. neriifolius.

2. EXPERIMENTAL

2.1. General

¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) were taken on a Bruker Avance AM500

spectrometer using TMS as internal standard for ¹H and solvent signal for ¹³C. ESI-MS was taken on an Agilent 1100 LC-MSD Trap spectrometer. Merck TLC aluminum sheets with silica gel 60 F254 (layer thickness 0.2 mm) were used. Column chromatography (CC) was carried out on silica gel Merck 60 (0.040-0.063 mm) and Sephadex LH-20.

2.2. Plant Material

Podocarpus neriifolius was collected in the Bidoup Nui Ba National Park in Lam Dong province, Vietnam in January, 2013 and identified by Dr. Nguyen Tien Hiep. A voucher specimen is deposited in the Vietnam National Museum of Nature Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.

2.3. Extraction and Isolation

The dried and powdered wood of *Podocarpus neriifolius* (1.4 kg) was extracted with methanol: water (95:5 w/w) for 24 h, three times. After concentration under reduced pressure, the crude extract was suspended in water and sequentially partitioned with *n*-hexane, ethyl acetate and *n*-butanol. The organic solvents were evaporated to

yield the corresponding extracts (0.45 g, 15.0 g and 13.2 g), respectively.

The ethyl acetate residue (15.0 g) was subjected to silica gel column, eluting with solvent system nhexane-CH₂Cl₂-MeOH (increasing amounts of CH₂Cl₂ from 70 to 100 % and MeOH from 0 to 35%) to yield 18 fractions (F1-F18). The fraction F3 (350 mg) was rechromatographed over a flash silica gel column using *n*-hexane-EtOAc (gradient from 99:1 to 85:15) as eluant to give compound 2 (33 F9 mg). The fraction (350 mg) was rechromatographed on silica gel column, eluted with hexane-EtOAc (8:2) to give 3 (15 mg). The fraction F14 (325 mg) was further separated by column chromatograph on silica gel eluted with CH₂Cl₂-MeOH (gradient from 100:1 to 80:20) to give seven subfractions (F14.1-F14.7). The subfraction F14.3 was purified on Sephadex LH-20 column eluting with MeOH to afford compound 1 (9 mg). The fraction F7 (419 mg) was rechromatographed on silica gel column, eluted with hexane-EtOAc (9:1) to give β -sitosterol (25 mg). The fraction F18 was repeatedly separated on Sephadex LH-20 column, eluted with MeOH to yield β -sitosterol glucoside (12 mg). NMR spectral data of β -sitosterol and β -sitosterol glucoside are in good agreement with those of published data [5, 6].

Inumakiol D (1):

Yellow solid. ESI-MS m/z 355.3 [M + Na]⁺.

¹H-NMR (500 MHz, CDCl₃ & CD₃OD): $\delta_{\rm H}$ 6.99 (1H, *d*, *J* = 8.5 Hz), 6.68 (1H, *d*, *J* = 8.5 Hz), 4.99 (1H, *br s*), 3.53-3.50 (1H, *m*), 1.42 (3H, *d*, *J* = 7.0 Hz), 1.37 (3H, *d*, *J* = 7.0 Hz), 1.31 (3H, *s*), 1.07 (3H, *s*).

 $^{13}\text{C-NMR}$ (125 MHz, CDCl₃ & CD₃OD), see table 1.

Totarol (2): Colorless solid. ESI-MS m/z 287.5 $[M+H]^+$.

¹H-NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 6.98 (1H, *d*, *J* = 8.5 Hz), 6.49 (1H, *d*, *J* = 8.5 Hz), 4.51 (1H, *s*), 3.30-3.27 (1H, *m*), 2.93 (1H, *dd*, *J* = 17.0, 6.5 Hz), 1.35 (1H, *d*, *J* = 7.0 Hz), 1.33 (1H, *d*, *J* = 7.0 Hz), 1.17 (3H, *s*), 0.94 (3H, *s*), 0.91 (3H, *s*).

 13 C-NMR (125 MHz, CDCl₃), see table 1.

Totarol-19-carboxylic acid (3):

¹H-NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 6.99 (1H, *d*, *J* = 8.5 Hz), 6.52 (1H, *d*, *J* = 8.5 Hz), 3.31 – 3.25 (1H, *m*), 2.95 (1H, *dd*, *J* = 16.5, 4.5 Hz), 1.35 (1H, *d*, *J* = 7.0 Hz), 1.34 (1H, *d*, *J* = 7.0 Hz), 1.33 (1H, *s*), 1.12 (1H, *s*).

13 C-NMR (125 MHz, CDCl₃), see table 1.

3. RESULTS AND DISCUSSION

Compound 1 was obtained as yellow solid. The positive ESI-MS of 1 gave a molecular ion peak at m/z 355.3 [M+Na]⁺, corresponding to the molecular formula C₂₀H₂₈O₄.

The ¹H- and ¹³C-NMR spectra of **1** (table 1) showed the presence of an isopropyl group [$\delta_{\rm C}$ 28.10 (d), 20.64 (q), 20.68 (q) and $\delta_{\rm H}$ 3.53-3.50 (m), 1.42 (*d*), 1.37 (*d*)], an aromatic ring $[\delta_{C} 154.36 (s), 140.35$ (s), 134.24 (s), 133.39 (s), 124.21 (d), 117.13 (d)],two methyl carbons [$\delta_{\rm C}$ 28.57 (q) and 22.51 (q)] attached to quaternary carbons, and a carboxyl group $[\delta_{\rm C} \ 181.13 \ (s)]$. These data and the molecular formula suggested that 1 was a diterpenoid. The HMBC correlations observed between H-12 ($\delta_{\rm H}$ 6.68), H-16 ($\delta_{\rm H}$ 1.37), H-17 ($\delta_{\rm H}$ 1.42) and C-14 ($\delta_{\rm C}$ 133.39), between H-15 ($\delta_{\rm H}$ 3.53-3.50) and C-8 ($\delta_{\rm C}$ 134.24); and between H-11 ($\delta_{\rm H}$ 6.99), H-12 ($\delta_{\rm H}$ 6.68), H-15 ($\delta_{\rm H}$ 3.53-3.50) and C-13 ($\delta_{\rm C}$ 154.36) indicated that the isopropyl group was attached at C-14 and the phenolic hydroxyl group was at C-13. Other HMBC correlations noted between H-5 (δ_{H} 1.97) and C-7 ($\delta_{\rm C}$ 65.45) and between H-7 ($\delta_{\rm H}$ 4.99) and C-5 (δ_C 45.38), C-8 (δ_C 134.24), C-9 (δ_C 140.35) showed that the hydroxyl group was located at C-7. From above spectral data, the structure of 1 was determined as inumakiol D. The ¹³C-NMR data (in pyridine- d_5) of **1** were in good agreement with those of inumakiol D in [7]. This compound was found for the first time in *Podocarpus macrophyllus* [7].

Figure 1: The structure of compounds **1-3** isolated from *Podocarpus neriifolius* wood

¹H- and ¹³C-NMR spectral data of compound **2** were similar with those of **1** except for the presence of an additional methyl group and the absence of one carbonyl and one secondary hydroxyl. Its ¹H- and ¹³C-NMR spectra exhibited the presence of an

isopropyl group [$\delta_{\rm C}$ 27.15 (*d*), 20.34 (*q*), 20.34 (*q*) and $\delta_{\rm H}$ 3.33-3.27 (*m*), 1.35 (d), 1.33 (*d*)], an aromatic ring [$\delta_{\rm C}$ 151.97 (*s*), 143.19 (*s*), 134.01 (*s*), 130.97 (*s*), 122.97 (*d*), 114.27 (*d*)], three methyl carbons [$\delta_{\rm C}$ 33.23 (*q*), 25.17 (*q*) and 21.57 (*q*)] attached to quaternary carbons. In addition, it showed five methylene carbons ($\delta_{\rm C}$ 41.56, 39.58, 28.75, 19.48, 19.34), a methine carbon ($\delta_{\rm C}$ 49.55) and two quaternary carbons ($\delta_{\rm C}$ 37.68, 33.25). ¹H- and ¹³C-NMR data of **2** are identical with those of totarol in previous report [8]. So, compound **2** was determined as totarol.

Table 1: ¹³C-NMR spectral data of compounds **1** (in CDCl₃ + CD₃OD) and **2-3** (in CDCl₃)

Position	1	2 (CDCl ₃)	3 (CDCl ₃)
1	40.09	41.56	40.11
2	20.44	19.47	20.07
3	37.72	39.58	37.22
4	43.5	33.25	43.75
5	45.38	49.55	52.08
6	31.15	19.34	21.09
7	65.45	28.75	30.01
8	134.24	134.01	134.26
9	140.35	143.19	140.98
10	38.92	37.68	38.52
11	124.21	122.97	124.14
12	117.13	114.27	114.58
13	154.36	151.97	152.05
14	133.39	130.97	130.89
15	28.10	27.15	27.26
16	20.64	20.34	20.31
17	20.68	20.34	20.41
18	28.57	33.23	28.62
19	181.13	21.57	183.91
20	22.51	25.17	23.20

1D-NMR spectra of compound 3 are also similar to those of compound 1 except for the absence of a hydroxyl group at C-7. Thus, 3 was elucidated as

Corresponding author: Trinh Thi Thuy

totarol-19-carboxylic acid by comparison with reported data [9]. This compound was found in some *Podocarpus* species [7, 9].

Acknowledgment. We are indebted to the National Foundation for Science & Technology Development (NAFOSTED) of Vietnam for financial support of this research (code: 104.01-2013.62).

REFERENCES

- 1. Pham Hoang Ho. *Flora of Vietnam*, Youth Publishing House, Ho Chi Minh City, **1**, 226 (2000).
- 2. Syed Hailer Mehdi Rizvi, Wasiur Rahman, Masayoshi Okigawa and Nobusuke Kawano. *Biflavones from Podocarpus neriifolius*, Phytochemistry, **13**, 1990 (1974).
- 3. Syed Haider Mehdi Rizvi and Wasiur Rahman. 7,4'dimethylaromadendrin and its glucoside from Podocarpus neriifolius, Phytochemistry, **13**, 2879 (1974).
- K. Shrestha, A. H. Banskota, S. Kodata, S. P. Shrivastava, G. Strobel and M. B. Gewali. An antiproliferative norditerpene dilactone, Nagilactone C, from Podocarpus neriifolius, Phytomedicine, 8(6), 489-491 (2001).
- 5. Shumaia Parvin, Md. Abdul Kader, Md. Abdul Muhit, Md. Ekramul Haque, Md. Ashik Mosaddik and Mir Imam Ibne Wahed. *Triterpenoids and phytosteroids from stem bark of Crataeva nurvala buch ham*, Journal of Applied Pharmaceutical Science, **1**(**9**), 47-50 (2011).
- 6. Hisashi Kojima, Noriko Sato, Akiko Hatano, Haruo Ogura. *Sterol glucosides from Prunella vulgaris*, Phytochemistry, **7**, 2351-2355 (1990).
- Kimihiko Sato, Keito Sugawara, Hirono Takeuchi, Hyun-Sun Park, Toshiyuki Akiyama, Tetsuo Koyama, Yutaka Aoyagi, Koichi Takeya, Takanori Tsugane, and Susumu Shimura. *Antibacterial Novel Phenolic Diterpenes from Podocarpus macrophyllus D. Don.*, Chem. Pharm. Bull., 56(12), 1691-1697 (2008).
- 8. Takahiro Miyake, Hideo Kigoshi and Hiroyuki Akita. *Chemoenzymatic synthesis of* (+)-totarol, (+)-podototarin, (+)-sempervirol, and (+)-jolkinolides *E* and *D*, Tetrahedron: Asymmetry, **18**, 2915-2922 (2007).
- 9. Jayr De Paiva Campello, Sebastiao Ferreira Fonseca, Ching-Jer Chang, Ernest Wenker. *Terpens of Podocarpus lambertius*, Phytochemistry, **14**, 243-248 (1975).

Institute of Chemistry Vietnam Academy of Science and Technology 18, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: thuy@ich.vast.vn; Tel. 0084-4-32121149; Fax. 0084-4-8361283.