FLAVONOIDS FROM THE ROOTS OF Sophora flavescens

Tran Hong Quang¹, Nguyen Xuan Nhiem¹, Do Thi Trang¹, Hoang Le Tuan Anh¹, Bui Huu Tai¹, Chau Van Minh¹, Young Ho Kim², Phan Van Kiem^{1*}

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology

²College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea

Received 23 January 2015; Accepted for Publication 18 March 2015

Abstract

Phytochemical study on the roots of *Sophora flavescens* resulted in the isolation of eight compounds. Their structures were identified as isoxanthohumol (1), norkurarinone (2), kurarinone (3), 2'-methoxykurarinone (4), kushenol T (5), norkurarinol (6), kuraridin (7), and formononetin (8) by detailed analyses of 1D and 2D NMR, and MS in comparison with the data reported in the literature.

Keywords. Sophora flavescens, Leguminosae, flavonoid.

1. INTRODUCTION

The dried roots of S. flavescens (Leguminosae) are commonly used as the traditional Chinese medicine and possess various physiological properties such as anti-bacterial, anti-inflammatory, antipyretic, anti-asthmatic, anti-ulcerative, and antineoplastic effects [1]. A series of isoprenylated or lavandulylated flavonoids have been isolated from this plant [2-7]. Some of these compounds exhibited significant antibacterial activity against Grampositive bacteria [2], antiviral activity against herpes simplex virus types I and II [3], as well as cytotoxic activity against human myeloid leukemia HL-60 cells [5, 7], and potent inhibitory activity against cGMP phosphodiesterase 5 [6]. The present study describes the isolation and structural elucidation of eight known flavonoids (2-9) from the methanol extract of the roots of S. flavescens.

2. MATERIAL AND METHODS

2.1. Plant materials

The roots of *S. flavescens* were purchased from herbal market at Kumsan, Chungnam, Korea, in August 2010. The plant material was identified by one of us (Y. H. Kim). A voucher specimen (CNU10106) was deposited at herbarium, College of Pharmacy, Chungnam National University.

2.2. General experimental procedures

Optical rotation was determined using a Jasco P-2000 digital polarimeter. Electron-impact mass spectra (EIMS) were obtained using a Hewlett-Packard MS 5988 mass spectrometer. The NMR spectra were recorded on a Jeol ECA 600 spectrometer using TMS as an internal standard. CD spectra were recorded with a Jasco J-720 TLC spectropolarimeter. was performed on Kieselgel 60 F254 (1.05715; Merck, Darmstadt, Germany) or RP-18 F254s (Merck) plates. Spots were visualized by spraying with 10 % aqueous H₂SO₄ solution, followed by heating. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck) and YMC RP-18 resins.

2.3. Extraction and Isolation

The dried stem bark of *S. flavescens* (3.0 kg) was extracted with hot MeOH. After concentration, the MeOH extract (250 g) was suspended in water and then partitioned successively with CH₂Cl₂ and EtOAc to give CH₂Cl₂ (A), EtOAc (B) and water (C) fractions, respectively. Fraction B was subjected to silica gel column chromatography, eluted with acetone in CH₂Cl₂ (0-100 %, stepwise) to yield five fractions (B1-5). Fraction B2 was then separated by column chromatography over C₁₈ reverse-phase, using MeOH–H₂O (2:1) to afford **7** (30 mg) and **8**

(15 mg). Fraction B3 was separated by column chromatography silica over gel, using CH₂Cl₂-EtOAc (4:1) as eluent to give three subfractions (B3A–C). Fraction B3A was chromatographed over silica gel column, eluting with CH_2Cl_2 -acetone (5:1) to provide 2 (50 mg). Subfraction B3B was then chromatographed over C₁₈ reverse-phase, using MeOH-H₂O (3:1), and further purified by column chromatography over silica gel, eluting with CH₂Cl₂-MeOH (15:1) to obtain and 5 (7 mg). Subfraction B3C was separated C_{18} reverse-phase chromatography, by using MeOH-H₂O (2:1) as eluent, and further purified by column chromatography over silica gel, eluting with CH₂Cl₂-MeOH (12:1) to obtain 1 (10 mg) and 6 (45 mg). Fraction B4 was separated by column chromatography over silica gel, eluted with CH₂Cl₂-Acetone (4:1) to provide three subfractions (B4A-C). Fraction B4B was then purified by column chromatography over C_{18} reverse-phase, using MeOH-H₂O (2:1) to afford 3 (45 mg) and 4 (10 mg).

Isoxanthohumol (1): pale yellow, amorphous powder, $[\alpha]_D^{25}$ -25 (*c* = 0.5, MeOH). EIMS *m/z* 354 [M⁺]. ¹H NMR (600 MHz, CD₃OD) & 5.23 (dd, *J* = 2.4, 13.2 Hz, H-2), 2.93 (dd, *J* = 13.2, 16.8 Hz, H-3a), 2.62 (dd, *J* = 3.6, 16.8 Hz, H-3b), 6.07 (br s, H-6), 7.27 (each d, *J* = 9.0 Hz, H-2' and H-6'), 6.78 (each d, *J* = 9.0 Hz, H-3' and H-5'), 3.16 (t, *J* = 6.0 Hz, H₂-1''), 5.10 (m, H-2''), 1.52 (s, H₃-4''), 1.58 (s, H₃-5''), 55.9 (5-OCH₃). ¹³C NMR (150 MHz, CD₃OD) & 79.9 (C-2), 46.1 (C-3), 192.9 (C-4), 161.7 (C-5), 93.3 (C-6), 164.2 (C-7), 109.9 (C-8), 163.8 (C-9), 105.7 (C-10), 131.5 (C-1'), 128.8 (C-2'), 116.2 (C-3'), 158.7 (C-4'), 116.2 (C-5'), 128.8 (C-6'), 22.7 (C-1''), 123.9 (C-2''), 131.6 (C-3''), 17.9 (C-4''), 25.9 (C-5''), 55.9 (5-OCH₃).

Norkurarinone (2): yellow, amorphous powder, $[\alpha]_D^{25}$ +10.3 (c = 0.7, MeOH). EIMS m/z 424 [M⁺]. ¹H NMR (600 MHz, CD₃OD) & 5.52 (dd, J = 3.0, 13.8 Hz, H-2), 2.90 (dd, J = 13.2, 16.8 Hz, H-3a), 2.70 (dd, J = 3.0, 17.4 Hz, H-3b), 5.87 (br s, H-6), 6.32 (d, J = 1.8 Hz, H-3'), 6.34 (dd, J = 1.8, 8.4 Hz, H-5'), 7.26 (d, J = 8.4 Hz, H-6'), 2.52 (m, H₂-1''), 2.41 (m, H-2''), 4.92 (t, J = 6.6 Hz, H-4''), 1.49 (s, H₃-6''), 1.41 (s, H₃-7''), 4.53 (d, J = 1.2 Hz, H-9''a), 4.47 (d, J = 1.2 Hz, H-9''b), 1.57 (s, H₃-10''). ¹³C NMR (150 MHz, CD₃OD) & 74.9 (C-2), 42.3 (C-3), 198.2 (C-4), 162.1 (C-5), 95.5 (C-6), 165.6 (C-7), 107.9 (C-8), 161.7 (C-9), 102.5 (C-10), 117.6 (C-1'), 155.7 (C-2'), 102.6 (C-3'), 158.4 (C-4'), 106.9 (C-5'), 127.9 (C-6'), 27.1 (C-1''), 47.3 (C-2''), 31.5 (C- 3"), 123.9 (C-4"), 131.2 (C-5"), 25.1 (C-6"), 17.1 (C-7"), 148.8 (C-8"), 110.4 (C-9"), 18.4 (C-10").

Kurarinone (3): yellow, amorphous powder, $[\alpha]_{D}^{25}$ +13.5 (c = 0.2, MeOH). EIMS m/z 438 [M⁺]. ¹H NMR (600 MHz, CD₃OD) δ : 5.52 (dd, J = 3.0, 13.8 Hz, H-2), 2.84 (dd, J = 13.2, 16.8 Hz, H-3a), 2.68 (dd, J = 2.4, 16.2 Hz, H-3b), 6.05 (br s, H-6), 6.33 (br s, H-3'), 6.34 (dd, J = 2.4, 8.4 Hz, H-5'), 7.28 (d, J = 8.4 Hz, H-6'), 2.58 (dd, J = 3.0, 7.2 Hz, H_2-1''), 2.45 (m, H-2''), 1.94 (m, H_2-3''), 4.91 (t, J =6.6 Hz, H-4"), 1.51 (s, H₃-6"), 1.41 (s, H₃-7"), 4.52 (d, J = 1.8 Hz, H-9''a), 4.47 (d, J = 1.8 Hz, H-9''b),1.57 (s, H₃-10"), 3.73 (5-OCH₃). ¹³C NMR (150 MHz, CD₃OD) δ: 74.5 (C-2), 44.6 (C-3), 193.2 (C-4), 160.8 (C-5), 92.4 (C-6), 163.9 (C-7), 108.6 (C-8), 163.8 (C-9), 104.8 (C-10), 117.6 (C-1'), 155.6 (C-2'), 102.5 (C-3'), 158.4 (C-4'), 106.8 (C-5'), 127.6 (C-6'), 27.3 (C-1"), 47.2 (C-2"), 31.5 (C-3"), 123.9 (C-4"), 131.1 (C-5"), 25.0 (C-6"), 17.0 (C-7"), 148.8 (C-8"), 110.3 (C-9"), 18.3 (C-10"), 55.0 (5-OCH₃).

2'-Methoxykurarinone (4): pale yellow, amorphous powder, $[\alpha]_{D}^{25}$ -35.2 (*c* = 0.1, MeOH). EIMS m/z 452 [M⁺]. ¹H NMR (600 MHz, CD₃OD) δ : 5.50 (dd, J = 2.4, 13.2 Hz, H-2), 2.83 (dd, J =13.2, 16.8 Hz, H-3a), 2.59 (dd, J = 2.4, 16.8 Hz, H-3b), 6.06 (br s, H-6), 6.43 (d, J = 2.4 Hz, H-3'), 6.42 (dd, J = 2.4, 7.8 Hz, H-5'), 7.33 (d, J = 8.4 Hz, H-6'), 2.56 (m, H₂-1"), 2.45 (m, H-2"), 1.94 (m, H₂-3"), 4.90 (t, J = 6.6 Hz, H-4"), 1.51 (s, H₃-6"), 1.42 (s, H₃-7"), 4.53 (d, J = 1.8 Hz, H-9"a), 4.46 (d, J =1.8 Hz, H-9"b), 1.59 (s, H₃-10"), 3.76 (5-OCH₃), 3.75 (2'-OCH₃). ¹³C NMR (150 MHz, CD₃OD) δ: 74.1 (C-2), 44.5 (C-3), 192.7 (C-4), 160.9 (C-5), 92.6 (C-6), 164.5 (C-7), 108.7 (C-8), 163.8 (C-9), 104.6 (C-10), 118.7 (C-1'), 158.0 (C-2'), 98.8 (C-3'), 159.1 (C-4'), 107.2 (C-5'), 127.6 (C-6'), 27.3 (C-1''), 47.2 (C-2"), 31.4 (C-3"), 123.9 (C-4"), 131.1 (C-5"), 25.0 (C-6"), 16.9 (C-7"), 148.8 (C-8"), 110.3 (C-9"), 18.2 (C-10"), 54.9 (5-OCH₃), 55.0 (2'-OCH₃).

Kushenol T (5): yellow, amorphous powder, $[\alpha]_D^{25} - 118.5 (c = 0.2, MeOH)$. EIMS m/z 426 [M⁺]. ¹H NMR (600 MHz, CD₃OD) δ : 5.63 (dd, J = 2.4, 13.2 Hz, H-2), 3.28 (H-3a), 2.86 (H-3b), 5.91 (br s, H-6), 6.81 (d, J = 7.8 Hz, H-3'), 7.14 (t, J = 7.8 Hz, H-4'), 6.87 (t, J = 7.8 Hz, H-5'), 7.23 (d, J = 7.8 Hz, H-6'), 2.84 (m, H-1''a), 2.36 (m, H-1''b), 1.02 (s, H₃-6''), 1.01 (s, H₃-7''), 4.61 (s, H-9''a), 4.54 (s, H-9''b), 1.62 (s, H₃-10''). ¹³C NMR (150 MHz, CD₃OD) δ : 75.0 (C-2), 42.2 (C-3), 197.7 (C-4), 161.4 (C-5), 95.5 (C-6), 162.3 (C-7), 107.7 (C-8), 165.6 (C-9),

VJC, Vol. 53(2e), 2015

102.4 (C-10), 126.1 (C-1'), 154.3 (C-2'), 115.2 (C-3'), 129.2 (C-4'), 119.7 (C-5'), 126.5 (C-6'), 27.6 (C-1''), 47.7 (C-2''), 27.0 (C-3''), 41.8 (C-4''), 70.6 (C-5''), 27.9 (C-6''), 28.3 (C-7''), 148.6 (C-8''), 110.7 (C-9''), 17.8 (C-10'').

Norkurarinol (6): yellow, amorphous powder, $[\alpha]_D^{25}$ -25.5 (c = 0.1, MeOH). EIMS m/z 442 [M⁺]. ¹H NMR (600 MHz, CD₃OD) δ : 5.53 (dd, J = 2.4, 13.2 Hz, H-2), 2.92 (dd, J = 13.8, 17.4 Hz, H-3a), 2.70 (dd, J = 3.0, 17.4 Hz, H-3b), 5.88 (br s, H-6), 6.31 (d, J = 3.0 Hz, H-3'), 6.33 (dd, J = 3.0, 8.4 Hz, H-5'), 7.27 (d, J = 8.4 Hz, H-6'), 2.56 (m, H₂-1''), 2.34 (m, H-2"), 1.04 (s, H₃-6"), 1.03 (s, H₃-7"), 4.57 (br s, H-9"a), 4.51 (d, J = 1.8 Hz, H-9"b), 1.59 (s, H₃-10"). ¹³C NMR (150 MHz, CD₃OD) δ: 74.8 (C-2), 42.3 (C-3), 198.1 (C-4), 162.2 (C-5), 95.4 (C-6), 165.5 (C-7), 107.7 (C-8), 161.0 (C-9), 102.4 (C-10), 117.4 (C-1'), 155.7 (C-2'), 102.5 (C-3'), 158.5 (C-4'), 106.8 (C-5'), 127.7 (C-6'), 27.5 (C-1''), 47.6 (C-2"), 27.1 (C-3"), 41.8 (C-4"), 70.7 (C-5"), 28.3 (C-6"), 27.9 (C-7"), 148.5 (C-8"), 110.7 (C-9"), 17.8 (C-10'').

Kuraridin (7): yellow, amorphous powder, $[\alpha]_D^{25}$ -25.5 (*c* = 0.1, MeOH). EIMS *m/z* 438 [M⁺]. ¹H NMR (600 MHz, CD₃OD) & 7.98 (d, *J* = 15.6 Hz, H-2), 7.91 (d, *J* = 15.6 Hz, H-3), 5.95 (br s, H-

Flavonoids from the roots of Sophora flavescens.

6), 6.30 (br s, H-3'), 6.32 (dd, J = 2.4, 7.8 Hz, H-5'), 7.37 (d, J = 7.8 Hz, H-6'), 2.59 (m, H₂-1''), 2.51 (m, H-2''), 2.04 (m, H₂-3''), 5.00 (t, J = 6.6 Hz, H-4''), 1.58 (s, H₃-6''), 1.51 (s, H₃-7''), 4.55 (s, H-9''a), 4.50 (s, H-9''b), 1.66 (s, H₃-10''), 3.83 (s, 5-OCH₃). ¹³C NMR (150 MHz, CD₃OD) & 138.6 (C-2), 124.3 (C-3), 193.6 (C-4), 165.5 (C-5), 90.4 (C-6), 162.9 (C-7), 107.7 (C-8), 161.3 (C-9), 105.4 (C-10), 115.2 (C-1'), 159.1 (C-2'), 102.5 (C-3'), 161.0 (C-4'), 107.8 (C-5'), 130.5 (C-6'), 27.0 (C-1''), 46.9 (C-2''), 31.3 (C-3''), 123.9 (C-4''), 130.7 (C-5''), 24.9 (C-6''), 16.8 (C-7''), 148.7 (C-8''), 110.1 (C-9''), 18.0 (C-10''), 54.9 (5-OCH₃).

Formononetin (8): pale yellow, amorphous powder. EIMS m/z 268 [M⁺]. ¹H NMR (600 MHz, DMSO- d_6) δ : 8.29 (d, J = 1.2 Hz, H-2), 7.94 (d, J = 9.0 Hz, H-5), 6.91 (dd, J = 1.2, 9.0 Hz, H-6), 6.83 (br s, H-8), 7.47 (each d, J = 8.4 Hz, H-2' and H-6'), 6.95 (each d, J = 8.4 Hz, H-3' and H-5'), 3.74 (s, 4'-OCH₃). ¹³C NMR (150 MHz, DMSO- d_6) δ : 154.0 (C-2), 124.0 (C-3), 175.5 (C-4), 117.5 (C-4a), 128.2 (C-5), 116.0 (C-6), 163.4 (C-7), 103.0 (C-8), 158.3 (C-8a), 125.1 (C-1'), 130.9 (C-2'), 114.5 (C-3'), 159.8 (C-4'), 114.5 (C-5'), 130.9 (C-6'), 56.0 (4'-OCH₃).

Figure 1: Chemical structures of compounds 1-8

3. RESULTS AND DISCUSSION

Compound 1 was isolated as a pale yellow, amorphous powder and its molecular formula was established to be $C_{21}H_{22}O_5$ by ¹H and ¹³C NMR spectroscopic analysis and EIMS at m/z 354 [M⁺]. The ¹H NMR spectrum of 1 showed an aromatic

proton singlet at $\delta_{\rm H}$ 6.07 (H-6), and a typical A₂B₂ system at $\delta_{\rm H}$ 7.27 (d, J = 9.0 Hz, H-2' and H-6') and 6.78 (d, J = 9.0 Hz, H-3' and H-5'). The ¹H NMR of **1** further showed signals for a 3,3-dimethylallyl group at $\delta_{\rm H}$ 3.16 (t, J = 6.0 Hz, H₂-1"), 5.10 (m, H-2"), 1.52 (s, H₃-4"), and 1.58 (s, H₃-5"). The

position of 3,3-dimethylallyl group was assigned to C-8 by the HMBC correlations from 3.16 (H_2 -1") to $\delta_{\rm C}$ 164.2 (C-7), 109.9 (C-8), and 163.8 (C-9). The signals of a methoxyl group at 3.75 (s), an oxymethine group at 5.23 (dd, J = 2.4, 13.2 Hz, H-2), and a methylene group at 2.93 (dd, J = 13.2, 16.8Hz, H-3a) and 2.62 (dd, J = 3.6, 16.8 Hz, H-3b) were also observed in the ¹H NMR spectrum of $\mathbf{1}$. The ¹³C NMR spectrum showed signals of a carbonyl carbon at 192.9 (C-4) and a methylene carbon at $\delta_{\rm C}$ 46.1 (C-3) implying that **1** belongs to the flavanone skeleton. The methoxyl group was located at C-5 based on the HMBC correlation of $\delta_{\rm H}$ 3.75 with $\delta_{\rm C}$ 161.7 (C-5). Based on the above analysis and comparison of the NMR data of 1 with those of reported compound, the structure of 1 was identified as isoxanthohumol [8].

Compound 2 was obtained as yellow, amorphous powder. Its molecular formula was determined to be $C_{25}H_{28}O_6$ by an ion m/z 424 [M⁺] in the EIMS. The ¹H NMR spectrum contained signals for an ABX aromatic ring system [$\delta_{\rm H}$ 6.32 (d, J = 1.8 Hz, H-3'), 6.34 (dd, J = 1.8, 8.4 Hz, H-5'), and 7.26 (d, J = 8.4Hz, H-6')], a singlet at 5.87 (H-6), an oxymethine group at 5.52 (dd, J = 3.0, 13.8 Hz, H-2), and a methylene group at 2.90 (dd, J = 13.2, 16.8 Hz, H-3a) and 2.70 (dd, J = 3.0, 17.4 Hz, H-3b). The ¹H NMR spectrum further showed the signals of three olefinic prontons at $\delta_{\rm H}$ 4.92 (1H, t, J = 6.6 Hz, H-4''), 4.53 (d, J = 1.2 Hz, H-9''a), 4.47 (d, J = 1.2 Hz, H-9"b), three tertiary methyl groups at $\delta_{\rm H}$ 1.49 (s, H-6"), 1.41 (s, H-7"), and 1.57 (3H, s, H-10"), two methylene groups at $\delta_{\rm H}$ 2.52 (m, H₂-1") and 1.94 (m, H₂-3"), and one methine group at $\delta_{\rm H}$ 2.41 (m, H-2") suggesting the presence of a lavandulyl group. The ¹³C NMR and DEPT spectra displayed 25 carbons, including signals for a flavanone and a lavandulyl group. The ¹³C NMR signals at $\delta_{\rm C}$ 117.6 (C-1'), 155.7 (C-2'), 102.6 (C-3'), 158.4 (C-4'), 106.9 (C-5'), and 127.9 (C-6') characterized for a 1,2,4trisubstituted aromatic ring of the flavanone. The lavandulyl group was located at C-8 by the HMBC correlations from $\delta_{\rm H}$ 7.26 (H-1") to 165.6 (C-7), 107.9 (C-8), and 161.7 (C-9). Finally, the structure of 2 was established as norkurarinone [9].

Compound **3**, a yellow, amorphous powder, had a molecular formula of $C_{26}H_{30}O_6$ as indicated by the ion m/z 438 [M⁺] in the EIMS. The ¹H and ¹³C NMR spectra of **3** were found nearly similar with those of **2**, except for the additional presence of a methoxyl group at δ_H 3.73/ δ_C 55.0. By HMBC correlation of δ_H 3.73 with δ_C 160.8 (C-5), the methoxyl group was located at C-5. Thus, **3** was established as kurarinone [10].

Compound 4, a pale yellow, amorphous powder, showed a molecular formula of $C_{27}H_{32}O_6$ as deduced by the ion m/z 452 [M⁺] in the EIMS. Comparison of the ¹H and ¹³C NMR spectra of 4 with those of 3 suggested the structures of these two compounds are nearly identical, except for the additional presence of a methoxyl signal at δ_H 3.75/ δ_C 55.0. This methoxyl group was connected to C-2' based on the HMBC correlation of δ_H 3.75 with δ_C 158.0 (C-2'). Therefore the structure of 4 was identified as 2'-methoxykurarinone [5].

Compound 5 was separated as a yellow, amorphous powder, with the molecular formula of $C_{25}H_{30}O_6$ as determined by ¹H and ¹³C NMR spectroscopic analyses and EIMS. The ¹H NMR spectrum showed a singlet at δ_H 5.91 (H-6), an oxymethine group at $\delta_{\rm H}$ 5.63 (dd, J = 2.4, 13.2, H-2), two olefinic protons [δ_H 4.61 (s, H-9"a) and 4.54 (s, H-9"b)], three tertiary methyl groups [$\delta_{\rm H}$ 1.02 (C-6"), 1.01 (C-7"), and 1.62 (C-10")], and signals characterized for a 1,2-disubstituted aromatic ring $[\delta_{\rm H} 6.81 \text{ (d, } J = 7.8 \text{ Hz, H-3'}), 7.14 \text{ (t, } J = 7.8 \text{ Hz, H-}$ 4'), 6.87 (t, J = 7.8 Hz, H-5'), and 7.23 (d, J = 7.8Hz, H-6')]. The ¹³C NMR and DEPT spectra displayed 25 signals, including three tertiary methyl, five methylene, and seven methine groups, and 10 quaternary carbons. The ¹³C NMR contained signals of one olefinic methylene group (δ_C 110.7, C-9"), one quaternary carbon (δ_C 70.6, C-5"), one methine group ($\delta_{\rm C}$ 47.7, C-2"), three methylene groups [$\delta_{\rm C}$ 27.6 (C-1"), 27.0 (C-3"), and 41.8 (C-4")], and three tertiary methyl groups [δ_{C} 27.9 (C-6"), 28.3 (C-7"), and 17.8 (C-10")] suggesting the presence of a 5hydroxy-2-isopropenyl-5-methylhexyl group. The HMBC correlations of $\delta_{\rm H}$ 2.84 and 2.36 (H₂-1") with $\delta_{\rm C}$ 162.3 (C-7), 107.7 (C-8), and 165.6 (C-9) that the 5-hydroxy-2-isopropenyl-5indicated methylhexyl group was connected to C-8. Based on the aforementioned analysis, along with comparison of the NMR data of 5 with those of reported data, the structure of **5** was established as kushenol T [2].

Compound **6** was isolated as a yellow, amorphous powder and its molecular formula was identified as $C_{25}H_{30}O_7$ by EIMS. The ¹H and ¹³C NMR spectra of **6** were found nearly identical with those of **2**, the difference is that the lavandulyl group in **2** was replaced by a 5-hydroxy-2-isopropenyl-5methylhexyl group in **6**. Thus the structure of **6** was identified as norkurarinol [10].

Compound 7, showed the molecular formula of $C_{26}H_{30}O_6$ by analysis of the ¹H and ¹³C NMR data and EIMS. The ¹H NMR spectrum contained signals for an ABX aromatic ring system [$\delta_H 6.30$ (br s, H-

VJC, Vol. 53(2e), 2015

3'), 6.32 (dd, J = 2.4, 7.8 Hz, H-5'), and 7.37 (d, J = 7.8 Hz, H-6')], a singlet at 5.95 (H-6), a methoxyl group at δ_H 3.83 (s), and signals for a lavandulyl moiety [$\delta_{\rm H}$ 5.00 (t, J = 6.6 Hz, H-4"), 4.55 (s, H-9"a), 4.50 (s, H-9"b), 2.59 (m, H₂-1"), 2.51 (m, H-2"), 2.04 (m, H₂-3"), 1.58 (s, H₃-6"), 1.51 (s, H-7"), and 1.66 (s, H_3 -10")]. The ¹H NMR spectrum further showed signals for two olefinic protons at $\delta_{\rm H}$ 7.98 (d, *J* = 15.6 Hz, H-2) and 7.91 (d, *J* = 15.6 Hz, H-3). The large coupling constant (15.6 Hz) between these olefinic protons implied trans-configured double bond. The ¹³C NMR and DEPT spectra exhibited one carbonyl carbon at δ_C 193.6 (C-4) and two olefinic methine carbon at δ_C 138.6 (C-2) and 124.3 (C-3) suggesting that the structure of 7 belongs to a chalcone skeleton. By HMBC correlation of $\delta_H 2.59$ (H_2-1'') with δ_C 162.9 (C-7), 107.7 (C-8), and 161.3 (C-9), the lavandulyl moiety was located at C-8. The methoxyl group was connected to C-5 based on HMBC correlation from δ_H 3.83 to δ_C 165.5 (C-5). Based the above spectroscopy analysis and comparison with the reported data, the structure of 7 was established as kuraridin [10].

Compound 8 was given as a pale yellow, amorphous powder and its molecular formula was deduced from EIMS. The ¹H NMR spectrum exhibited signals for an ABX spin aromatic ring $[\delta_{H}]$ 7.94 (d, J = 9.0 Hz, H-5), 6.91 (dd, J = 1.2, 9.0 Hz, H-6), and 6.83 (br s, H-8)] and an A_2B_2 system at δ_H 7.47 (d, J = 8.4 Hz, H-2', 6') and 6.95 (d, J = 8.4 Hz, H-3', 5'). The ¹H NMR spectrum further showed signals of an olefinic proton at $\delta_{\rm H}$ 8.29 (d, 1.2, H-2) and a methoxyl group at δ_H 3.74 (s). The ¹³C NMR and DEPT presented 16 carbons, including one carbonyl carbon ($\delta_{\rm C}$ 175.5, C-4), one olefin [$\delta_{\rm C}$ 154.0 (C-2) and 124.0 (C-3)] suggesting that 8 belongs to the isoflavone skeleton. The methoxyl group was located at C-4' based on the HMBC correlation of δ_H 3.74 with $\delta_{\rm C}$ 159.8 (C-4'). Finally the structure of **8** was identified as formononetin [11].

Aknowledgements. This work was financially supported by the Priority Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093815), Republic of Korea.

Flavonoids from the roots of Sophora flavescens. **REFERENCES**

- 1. H. M. Chang, P. P. H. But. *Pharmacology and Application of Chinese Materia Medica*. World Scientific Publishers: Philaldephia, p. 736 (1986).
- M. Kuroyanagi, T. Arakawa, Y. Hirayama, T. Hayashi. Antibacterial and antiandrogen flavonoids from Sophora flavescens, Journal of Natural Products, 62, 1595-1599 (1999).
- E. R. Woo, J. H. Kwak, H. J. Kim, H. Park. A new prenylated flavonol from the roots of Sophora flavescens, Journal of Natural Products, 61, 1552-1554 (1998).
- S. S. Kang, J. S. Kim, K. H. Son, H. W. Chang, H. P. Kim. A new prenylated flavanone from the roots of Sophora flavescens, Fitoterapia, 71, 511-515 (2000).
- T. H. Kang, S. J. Jeong, W. G. Ko, N. Y. Kim, B. H. Lee, M. Inagaki, T. Miyamoto, R. Higuchi, Y. C. Kim. *Cytotoxic lavandulyl flavanones from Sophora flavescens*. Journal of Natural Products, 63, 680-681 (2000).
- H. J. Shin, H. J. Kim, J. H. Kwak, H. O. Chun, J. H. Kim, H. Park, D. H. Kim, Y. S. Lee. A prenylated flavonol, sophoflavescenol: a potent and selective inhibitor of cGMP phosphodiesterase 5, Bioorganic & Medicinal Chemistry Letters, 12, 2313-2316 (2002).
- 7. W. G. Ko, T. H. Kang, N. Y. Kim, S. J. Lee, Y. C. Kim, G. I. Ko, S. Y. Ryu, B. H. Lee. Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens, Toxicology in Vitro, 14, 429-433 (2000).
- T. S. Jeong, Y. B. Ryu, H. Y. Kim, M. J. Curtis-Long, S. J. An, J. H. Lee, W. S. Lee, K. H. Park. Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens, Biological & Pharmaceutical Bulletin, 31, 2097-2102 (2008).
- 9. P. I. Hillerns, M. Wink. *Binding of flavonoids from Sophora flavescens to the rat uterine estrogen receptor*, Planta Medica, **71**, 1065-1068 (2005).
- S. Y. Ryu, H. S. Lee, Y. K. Kim, S. H. Kim. Determination of isoprenyl and lavandulyl positions of flavonoids from Sophora flavescens by NMR experiment, Archives of Pharmacal Research, 20, 491-495 (1997).
- J. S. Hwang, S. A. Lee, S. S. Hong, K. S. Lee, M. K. Lee, B. Y. Hwang, J. S. Ro. *Monoamine oxidase inhibitory components from the roots of Sophora flavescens*, Archives of Pharmacal Research, 28, 190-194 (2005).

Corresponding author: Phan Van Kiem

Institute of Marine Biochemistry, Vietnam Academy of Science and Technology 18, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: phankiem@yahoo.com.