DITERPENOID CONSTITUENTS FROM SINULARIA MAXIMA

Nguyen Phuong Thao¹, Nguyen Xuan Cuong¹, Nguyen Van Thanh¹, Nguyen Hoai Nam^{1*}, Young Ho Kim², Phan Van Kiem¹, Chau Van Minh¹

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology

²College of Pharmacy, Chungnam National University, Korea

Received 23 January 2015; Accepted for Publication 18 March 2015

Abstract

Three diterpenoids including isomandapamate (1), sethukarailin (2), and (1S, 2E, 4S, 6E, 8S, 11R)-2,6,12(20)cembratriene-4,8,11-triol (3) were isolated and structurally elucidated from the methanol extract of the soft coral *Sinularia maxima* by using combined chromatographic and spectroscopic experiments. Of the isolated compounds, 3 was isolated from *S. maxima* for the first time.

Keywords. Sinularia maxima, Alcyoniidae, soft coral, diterpene.

1. INTRODUCTION

Soft corals are a group of colonial invertebrates which form a significant set of marine organisms occurring widely in the coral reefs throughout the world [1, 2]. Among the Alcyonacean soft corals, genus Sinularia is one of the most widely distributed soft coral genera, constituting a dominant portion of the biomass in the tropical reef environment. Sinularia species are rich sources of structurally unique and biologically active diterpenoids [1]. As part of our ongoing investigations to find bioactive compounds from Vietnamese marine invertebrates, we have reported nine new diterpenoids from the soft coral Sinularia maxima [3]. The current paper addresses the isolation and structural elucidation of three diterpenoids including isomandapamate (1), (1*S*,2*E*,4*S*,6*E*,8*S*,11*R*)sethukarailin (2),and 2,6,12(20)-cembratriene-4,8,11-triol (3) from this soft coral.

2. EXPERIMENTAL

2.1. General experimental procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR spectrometer, TMS was used as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained on an Agilent 1260 series single quadrupole LC/MS system. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh,

Merck) and YMC RP-18 resins (30-50 μ m, Fuji Silysia Chemical Ltd.). Thin layer chromatography (TLC) used pre-coated silica gel 60 F₂₅₄ (1.05554.0001, Merck) and RP-18 F_{254S} plates (1.15685.0001, Merck). Compounds were visualized by spraying with aqueous 10 % H₂SO₄ and heating for 3–5 minutes.

2.2. Marine materials

The sample of soft coral *S. maxima* was collected at Nha trang Bay, in 11/2010 and identified by Prof. Do Cong Thung (Institute of Marine Environment and Resources, VAST). A voucher specimen (SM112010_01) was deposited at the Institute of Marine Biochemistry and Institute of Marine Environment and Resources, VAST.

2.3. Isolation

Fresh frozen samples of the soft coral S. maxima (2.5 kg) were well grinded and extracted three times with hot MeOH (at 50 °C for 5 h each time). The obtained solutions were filtered, combined, and concentrated under reduced pressure to yield a dark brown viscous residue (38.75 g, A). This residue was suspended in water (2 L) and partitioned in turn with CH_2Cl_2 (3 × 2 L) and EtOAc (3 × 2 L). The combined dichloromethane soluble portions were evaporated under reduced pressure to afford CH₂Cl₂ extract (12.24 g, B). Extract B was crudely separated by silica gel chromatography (CC) column using gradient concentrations of ethyl acetate in *n*-hexane from 0 to

VJC, Vol. 53(2e), 2015

100% to yield four fractions, B-1 to B-4. Fraction B4 (2.05 g) was fractionated into five subfractions, B4.1 to B4.5, by YMC RP-18 CC using stepwise elution with acetone/H₂O (1/3 to 1/1). Subfraction B4.1 (0.38 g) afforded compound **3** (12 mg) after subjecting it to silica gel CC eluting with CH₂Cl₂/acetone (6/1). Compound **1** (15 mg) was obtained from subfraction B4.3 (0.57 g) by silica gel CC using CH₂Cl₂/EtOAc (3.5/1) as eluent. Subfraction B4.5 (0.39 g) was chromatographed on silica gel CC eluting with CHCl₃/MeOH/acetone (25/1/0.6) and further separated by YMC RP-18 CC with acetone/H₂O (1/2.5) to obtain compound **2** (7 mg).

Isomandapamate (1): Colorless oil; $[\alpha]_D$ +75 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 1; ESI-MS m/z 457 [M+Na]⁺ (C₂₃H₃₀O₈, M = 434).

Sethukarailin (2): Colorless oil; $[\alpha]_D - 15$ (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 1; ESI-MS *m*/*z* 457 [M+Na]⁺ (C₂₃H₃₀O₈, M = 434).

(1S,2E,4S,6E,8S,11R)-2,6,12(20)-cembratriene-4,8,11-triol (**3**): Colorless solid; $[\alpha]_D$ +70 (*c* 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) see table 2; ESI-MS *m*/*z* 345 [M+Na]⁺ (C₂₀H₃₄O₃, M = 322).

Figure 1: Chemical structures of compounds 1-3

Table 1:	¹ H-NMR	(500 MHz) an	d ¹³ C-NMR	(125 MHz)) data of 1 , 1	2, and re	ported com	pounds
----------	--------------------	--------------	-----------------------	-----------	------------------------	-----------	------------	--------

C	as	bs	1 ^c		ds	2 ^c		
C	OC	Ο _C	δ _C	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)	- 0 _C	δ _C	$\delta_{\rm H}$ mult. (<i>J</i> = Hz)	
1	43.2	43.4	43.86	2.19 m	41.4	42.01	1.74 m	
2	33.4	33.5	33.90	1.61 m/1.90 m	33.2	40.27	2.54 dd (6.0, 14.5)	
							2.03 dd (5.0, 14.5)	
3	111.1	111.2	111.66	-	115.9	116.43	-	
4	134.8	135.0	135.33	-	131.2	131.73	-	
5	154.4	150.5	151.15	6.65 s	138.9	139.57	6.94 s	
6	84.7	84.8	85.32	-	150.0	150.63	-	
7	52.6	52.8	53.21	2.68 d (13.0)	116.9	117.54	5.14 d (1.5)	
8	77.5	77.5	77.93	-	70.7	71.30	-	
9	51.3	51.5	51.99	2.20 m	51.4	51.99	3.86 d (18.5)	
				1.97 br d (15.0)			2.67 dd (1.5, 18.5)	
10	67.6	67.5	68.17	4.58 m	210.6	211.39	-	
11	46.9	47.2	47.59	2.45 br d (13.0)	40.9	41.48	3.32 d (18.5)/3.52 d (18.5)	
12	133.5	133.6	134.12	-	128.1	128.63	-	
13	143.2	143.2	144.02	6.63 t (3.0)	143.3	143.95	6.98 t (7.0)	
14	43.2	43.4	43.78	2.14 m	39.8	33.71	2.14 m/2.21 m	
15	144.2	144.5	144.75	-	145.8	146.37	-	
16	113.4	113.6	114.20	4.82 s/4.72 s	112.8	113.44	4.72 s/4.56 s	
17	19.6	19.8	20.33	1.62 s	19.5	20.11	1.60 s	
18	162.5	162.0	163.22	-	162.0	162.61	-	
19	26.8	27.0	27.55	1.51 s	27.3	27.88	1.34 s	
20	166.6	166.8	167.34	-	167.3	167.91	-	
21	51.8	51.1	52.11	3.33 s	51.8	52.49	3.73 s	
22	52.3	51.8	52.45	3.74 s	52.2	52.76	3.76 s	
23	52.0	51.9	52.70	3.70 s	49.9	50.59	3.07 s	

 ${}^{a}\delta_{C}$ of mandapamate [4], ${}^{b}\delta_{C}$ of isomandapamate [5], crecorded in CDCl₃, ${}^{d}\delta_{C}$ of sethukarailin [6].

С	${}^{a}\delta_{C}$	$\delta_C{}^{b,c}$	$\delta_{\rm C}^{\rm b,d}$ mult. (<i>J</i> = Hz)	HMBC (H \rightarrow C)
1	49.2	49.66	1.65 m	
2	130.2	129.90	5.32 m	1, 3
3	138.2	138.01	5.35 d (16.0)	2,4
4	73.0	73.05	-	
5	45.7	45.46	2.22 m/2.34 dd (14.0, 4.0)	4, 18
6	123.6	124.92	5.51 ^e	5,7
7	139.3	139.24	5.50 ^e	6, 8
8	73.2	73.16	-	
9	37.0	37.27	1.49 m/1.30 m	8, 10
10	29.4	28.70	1.58 m/1.28 m	11
11	76.6	75.21	4.11 t (6.2)	12, 13, 20
12	151.4	151.14	-	
13	29.1	29.64	1.57 m/1.16 m	11, 12, 14
14	31.2	28.97	1.87 m/1.96 m	1
15	32.2	32.31	1.54 m	
16	19.7	19.71	0.82 d (7.0)	1, 15, 17
17	20.6	20.67	0.85 d (7.0)	1, 15, 16
18	30.7	30.77	1.29 s	3, 4, 5
19	30.6	28.93	1.26 s	7, 8, 9
20	111.3	110.43	4.81 br s/4.92 br s	11, 12, 13

Table 2: NMR data of 3 and reported compound

^aδ_C of (1S, 2E, 4S, 6E, 8S, 11R)-2,6,12(20)-cembratriene-4,8,11-triol [7], ^brecorded in CDCl₃, ^c125 MHz, ^d500 MHz, ^eoverlapped signals.

3. RESULTS AND DISCUSSION

The NMR features of **1** indicated a diterpenoid, one main constituent of soft corals. The ¹H-NMR spectrum of 1 exhibited typical signals of two tertiary methyl [$\delta_{\rm H}$ 1.62 (H-17) and 1.51 (H-19), each 3H, s], one oxymethine [$\delta_{\rm H}$ 4.58 (1H, m, H-10)], three methoxyl groups [δ_H 3.33 (H-21), 3.74 (H-22), 3.70 (H-23), each 3H, s], and two olefinic protons [$\delta_{\rm H}$ 6.65 (1H, s, H-5) and 6.63 (1H, t, J = 3.0Hz, H-13)]. In addition, a terminal olefinic methylene was identified by singlet proton signals at $\delta_{\rm H}$ 4.72 (H_a-16)/4.82 (H_b-16), which was correlated with the relevant carbon at δ_C 114.20 (C-16). The presence of two methyl [δ_C 20.33 (C-17) and 27.55 (C-19)], one oxymethine [$\delta_{\rm C}$ 68.17], three methoxyl carbons [δ_{C} 52.11 (C-21), 52.45 (C-22), and 52.70 (C-23)], and two trisubstituted double bonds [$\delta_{\rm C}$ 135.33 (s, C-4)/151.15 (d, C-5) and 134.12 (s, C-12)/144.02 (d, C-13)] was also confirmed by 13 C-NMR spectrum of 1. Moreover, carbon signals of one dioxygenated quaternary [$\delta_{\rm C}$ 111.66 (C-3)], two oxygenated quaternary [δ_C 85.35 (C-6) and 77.93 (C-8)], and two carbonyl [δ_C 163.22 (C-18) and 167.34 (C-20)] carbons were also observed. From above evidence, the ¹³C-NMR data of 1 (Table 1) were found to be similar to those of isomandapamate, a diterpene previously isolated from *S. maxima* [5]. Detailed analysis of the HMBC cross-peaks also confirmed the structure of **1**. Finally, the ¹³C-NMR chemical shift for C-5 of **1** at $\delta_{\rm C}$ 151.15 was similar to that of isomandapamate at $\delta_{\rm C}$ 150.5 [5] and quite different from that of mandapamate at $\delta_{\rm C}$ 154.4 [4] confirmed that compound **1** is isomandapamate.

Figure 2: Key HMBC correlations of 1 and 2

The ¹H and ¹³C-NMR data of **2** were similar to those of **1** with the presence of two tertiary methyl $[\delta_{\rm H} 1.60 \text{ (H-17) and } 1.34 \text{ (H-19), each 3H, s], three}$ methoxyl [$\delta_{\rm H}$ 3.73 (H-21), 3.76 (H-22), 3.07 (H-23), each 3H, s], a terminal olefinic methylene groups $[\delta_{\rm H} 4.56 \text{ and } 4.72, \text{ each 1H, s, H-16/113.44 (C-16)}],$ and two carbonyl carbons [δ_{C} 162.61 (C-18) and 167.91 (C-20)]. The easily visible difference between these two compounds is the absence of an oxygenated quaternary and an oxymethine carbons and the additional presence of a trisubstituted double bond and a ketone group in the spectra of 2 relative to those of **1**. The good agreement of the 13 C-NMR data of 2 (table 1) with the reported values [6] and combination with the HMBC data (figure 2) confirmed compound 2 as sethukarailin. However, based on HSQC and HMBC experiments (figure 2), the published ¹³C-NMR data at C-2 and C-14 of sethukarailin [6] must be reversed as shown in the table 1.

An agreement of the ¹³C-NMR data with the reported values and combination with HMBC data (Table 2) led to identification of compound **3** as (1S,2E,4S,6E,8S,11R)-2,6,12(20)-cembratriene-

4,8,11-triol [7]. This compound was first isolated from *S. maxima*.

4. CONCLUSION

Using combined chromatographic and spectroscopic methods, three diterpenoids including isomandapamate (1), sethukarailin (2), and (1S,2E,4S,6E,8S,11R)-2,6,12(20)-cembratriene-

4,8,11-triol (3) were isolated and structurally elucidated from the methanol extract of the soft coral *Sinularia maxima*. This is the first report of compound 3 from this soft coral, while compounds 1 and 2 were previously isolated from *S. maxima*

confirming our taxonomic identification.

Acknowledgements. This study was supported by Vietnam Academy of Science and Technology (code: VAST.TĐ.ĐAB.02/13–15). The authors are grateful to the Institute of Chemistry, VAST, and KBSI for the provision of the spectroscopic instrument.

REFERENCES

- 1. V. Lakshmi, R. Kumar. *Metabolites from Sinularia species*, Nat. Prod. Res., **23(9)**, 801-850 (2009).
- J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. Munro, M. R. Prinsep. *Marine natural products*, Nat. Prod. Rep., **29**(2), 144-222 (2012).
- N. P. Thao, N. H. Nam, N. X. Cuong, T. H. Quang, P. T. Tung, B. H. Tai, B. T. Luyen, D. Chae, S. Kim, Y. S. Koh, P. V. Kiem, C. V. Minh, Y. H. Kim. Diterpenoids from the soft coral Sinularia maxima and their inhibitory effects on lipopolysaccharidestimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells, Chem. Pharm. Bull., 60(12), 1581-1589 (2012).
- Y. Venkateswarlu, M. A. Farooq Biabani, M. Venkata Rami Reddy, T. Prabhakar Rao, A. C. Kunwar, D. John Faulkner. *Mandapamate, a diterpenoid from the soft coral Sinularia dissecta,* Tetrahedron Lett., 35(14), 2249-2252 (1994).
- 5. A. S. R. Anjaneyulu, K. S. Sagar, M. J. R. V. Venugopal. *Terpenoid and steroid constituents of the Indian ocean soft coral Sinularia maxima* Tetrahedron, **51(40)**, 10997-11010 (1995).
- 6. Y. Venkateswarlu, K. V. Sridevi, M. R. Rao. New furanocembranoid diterpenes from the soft coral Sinularia maxima, J. Nat. Prod., **62(5)**, 756-758 (1999).
- E. Olsson, A.-M. Eklund, I. Wahlberg. Tobacco Chemistry. 72. Five New Cembratrienetriols from Tobacco, Acta Chemica Scandinavica, 45(1), 92-98 (1991).

Corresponding author: Nguyen Hoai Nam

Institute of Marine Biochemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam E-mail: namnguyenhoai@imbc.vast.vn.