GÓP PHẦN NGHIÊN CỨU THÀNH PHẦN HÓA HỌC CỦA CÂY CỎ MỰC (ECLIPTA PROSTRATA L., ASTERACEAE) CỦA VIỆT NAM

Phan Minh Giang^{*}, Nguyễn Thị Thơi, Nguyễn Văn Tài, Phan Tống Sơn

Khoa Hóa học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội Đến Tòa soạn 15-10-2014; Chấp nhận đăng 13-2-2015

Abstract

From the aerial parts of *Eclipta prostrata* L. (Asteraceae) β -sitosterol, methyl gallate, eclalbasaponin I, eclalbasaponin II, norwedelolacton, and hesperidin were isolated. Their structures were determined by using MS and NMR techniques.

Keywords. Eclipta prostrate, Asteraceae, saponin, coumestane, hesperidin.

1. MỞ ĐẦU

Cây Cỏ mực (các tên khác là Cỏ nho nồi, Nho nồi, Hạn liên thảo) có tên khoa học là Eclipta prostrata L. (syn. Eclipta alba Hassk.), ho Cúc -Asteraceae [1]. Cỏ mực thuộc loại cây thân thảo mọc bò hoặc có khi gần thẳng đứng có thể cao tới 80 cm. Trong nhân dân sử dụng phần trên mặt đất của cây này (được gọi là Mặc hạn liên) để cầm máu. Loài cây liên nhiệt đới này có vùng phân bố trên thế giới khá rộng và do đó được nghiên cứu nhiều về hóa học. E. prostrata cung cấp các lớp chất polythienyl và polyacetylen 3], wedelolacton [2. và norwedelolacton [4], các triterpenoid glycosid dãy taraxastan [5] và oleanan [6], và các isoflavonoid [7]. Các alcaloid khung steroid có hoạt tính làm hư hại ADN được phân lập từ lá cây E. alba của Suriname [8] là các phát hiện lý thú trong cả họ thực vật Asteraceae. Môt số các hợp chất triterpenoid và coumestan của E. prostrata đã được phân lập lại trong môt số nghiên cứu về cây Cỏ mực của Việt Nam [9]. Do tác dụng chống tăng sinh đáng chú ý của các triterpenoid saponin từ phân đoạn n-BuOH của E. prostrata đối với tế bào HSC mới được phát hiện gần đây [10] nghiên cứu của chúng tôi xây dựng qui trình phân lập các chất có trong các phần chiết phân cực của cây Cỏ mực trồng ở miền Bắc Viêt Nam.

2. THỰC NGHIỆM

2.1. Phương pháp và Thiết bị

Phổ ESI-MS được đo trên thiết bị Agilent 6310

Ion Trap LC/MS System. Phổ cộng hưởng từ hạt nhân proton (¹H-NMR, 500 MHz) và cacbon 13 (¹³C-NMR, 125 MHz) được ghi trên thiết bị Bruker Avance 500 với tetrametylsilan (TMS) là chất chuẩn nội zero ($\delta = 0$). Tính bội của các tín hiệu cacbon 13 được xác định bằng các kỹ thuật phổ DEPT. Sắc ký lớp mỏng (TLC) được thực hiện trên bản mỏng tráng sẵn DC-Alufolien 60 F₂₅₄ (Merck, CHLB Đức). Phát hiện vệt chất bằng các thuốc thử vanilin/H₂SO₄ đặc 1 %, FeCl₃ 5 % và đèn tử ngoại ở bước sóng λ 254 nm. Sắc ký cột thường (CC), sắc ký cột nhanh (FC) và sắc ký cột tinh chế (Mini-C) được thực hiện trên chất hấp phụ silica gel (Merck, CHLB Đức) với các cỡ hạt 63-200, 63-100 và 40-63 µm.

2.2. Nguyên liệu thực vật

Nguyên liệu thực vật là phần trên mặt đất của cây Cỏ mực (*E. prostrata* L., Asteraceae) làm thuốc được thu hái tại Hà Nội vào hai thời điểm tháng 4 năm 2009 (lần 1: 0,6 kg thân cây khô) và tháng 6 năm 2010 (lần 2: 3,4 kg phần trên mặt đất khô). Mẫu thực vật được lưu tiêu bản tại Phòng thí nghiệm Hóa hợp chất thiên nhiên, Khoa Hóa học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội.

2.3. Chiết và phân lập các hợp chất

Nguyên liệu thực vật được phơi khô, sấy ở nhiệt độ 40-50 °C. Mẫu khô được xay thành bột mịn sau đó được ngâm chiết với MeOH ở nhiệt độ phòng (4 lần \times 3 ngày). Các dịch lọc MeOH được gộp lại và cất loại dung môi dưới áp suất giảm cho phần chiết MeOH. Phần chiết MeOH này được chiết lần lượt với *n*-hexan, CH₂Cl₂ và EtOAc. Các phần chiết nhận được sau khi cất loại dung môi dưới áp suất giảm ở nhiệt độ 50 °C là *n*-hexan từ thân (2,76 g, hiệu suất chiết 0,46 % so với lượng nguyên liệu khô) và từ phần trên mặt đất (107,2 g, 3,15 %), CH₂Cl₂ từ thân (1,34 g, 0,22 %) và từ phần trên mặt đất (4,9 g, 0,14 %), và EtOAc từ thân (3,42 g, 0,57 %) và từ phần trên mặt đất (4,9 g, 0,14 %). Các dịch nước còn lại được cô kiệt cho các phần chiết nước.

Phân tách các phần chiết từ thân cây: Phần chiết *n*-hexan (2,7 g) được phân tách bằng CC trên silica gel (gradient n-hexan-axeton 19:1, 9:1, 6:1 và 3:1) cho 9 nhóm phân đoạn. Các nhóm phân đoạn 2 (0,9 g), 4 (0,12 g) và 5 (33 mg) được rửa bằng *n*-hexan cho β -sitosterol (1) (các khối lượng tương ứng là 10 mg, 0,11 g và 30 mg). Phần chiết CH_2Cl_2 (1,3 g) được phân tách bằng CC trên silica gel (gradient nhexan-axeton 6:1, 3:1, 2:1 và 1:1) cho 9 nhóm phân đoạn. Các nhóm phân đoạn 1 (0,1 g) và 2 (0,18 g) được rửa bằng *n*-hexan cho $\mathbf{1}$ (0,27 g). Phần chiết EtOAc (3,4 g) được phân tách bằng CC trên silica gel (gradient n-hexan-EtOAc-HCOOH 20:19:1 và 10:19:1) cho 10 nhóm phân đoạn. Nhóm phân đoạn 3 được tinh chế bằng CC trên Sephadex LH-20 (MeOH) cho metyl gallat (2) (0,13 g). Phần chiết nước được phân tách bằng CC trên Diaion HP-20 (gradient H₂O, MeOH-H₂O 20 %, MeOH 40 %, MeOH 60 % và MeOH). Phân đoạn 60 % MeOH-H₂O được phân tách CC trên Sephadex LH-20 (MeOH), nối tiếp bằng CC trên silica gel (gradient CH₂Cl₂-MeOH 9:1, 7:1, 4:1 và 2:1)cho eclalbasaponin I (3) (10 mg).

Phân tách các phần chiết từ phần trên mặt đất: Phần chiết CH₂Cl₂ (4,9 g) được phân tách bằng CC trên silica gel (gradient n-hexan-axeton 19:1, 9:1, 6:1, 3:1 và 1:1) cho 12 nhóm phân đoạn. Nhóm phân đoan 2 (0,45 g) cho 1 (0,39 g). Các nhóm phân đoan 11-12 (0,5 g) được phân tách bằng cột SPE RP-18 với MeOH cho eclalbasaponin II (4) (40 mg). Phần chiết EtOAc (4,9 g) được phân tách bằng CC trên silica gel (gradient n-hexan-EtOAc-HCOOH 20:19:1 và 10:20:1) cho 10 nhóm phân đoạn. Các nhóm phân đoan 7-9 (0.96 g) được gộp lại và tinh chế bằng CC trên Sephadex LH-20 (MeOH) sau đó được rửa bằng hê dung môi *n*-hexan-axeton 1:1 cho 4 (0.5 g). Nhóm phân đoạn 10 được rửa bằng MeOH cho hesperidin (6) (28 mg). Phân chiết nước được phân tách bằng CC trên Diaion HP-20 (gradient H₂O, MeOH-H₂O 20 %, 40 % và 60 % và MeOH). Phân đoạn 40 % MeOH-H₂O được phân tách 2 lần bằng CC trên silica gel với gradient CH₂Cl₂-MeOH 15:1, 9:1, 6:1 và 3:1 và gradient CH₂Cl₂-MeOH-H₂O 8:2:0,2 và 7:3:0,5 cho norwedelolacton (5) (10 mg). Phân đoạn 60% MeOH-H₂O được phân tách CC trên silica gel (gradient CH_2Cl_2 -MeOH 15:1, 9:1, 6:1 và 3:1) cho hesperidin (6) (26 mg).

2.4. Hằng số vật lý và dữ kiện phổ của các hợp chất được phân lập

β-Sitosterol (1): Tinh thể hình kim màu trắng, đ.n.c. 141-142 °C. $R_f 0,38$ (TLC, silica gel, *n*-hexanaxeton 6:1, v:v), vệt chất hiện màu hồng với thuốc thử vanillin/H₂SO₄ đặc 1 %.

Metyl gallat (2): Tinh thể hình kim màu trắng, đ.n.c. 201-203 °C. $R_f 0,27$ (TLC, silica gel, *n*-hexan-EtOAc-HCOOH 20:19:1, v:v:v), vệt chất hiện màu vàng với thuốc thử vanillin/H₂SO₄ đặc 1 %, hiện màu xanh thẫm với thuốc thử FeCl₃ 5 %. ¹H-NMR (CD₃OD, ppm): δ 3,83 (3H, s, -OCH₃), 7,06 (2H, s, H-2, H-6). ¹³C-NMR/DEPT (CD₃OD, ppm): δ 169,1 (s, C-7), 146,5 (s, C-4), 139,8 (s, C-3, C-5) 121,5 (s, C-1), 110,1 (d, C-2, C-6), 52,3 (q, -OCH₃).

Eclalbasaponin I (3): Bột vô định hình màu trắng. R_f 0,66 (TLC, silica gel, CH₂Cl₂-MeOH 2:1, v/v), vệt chất hiện màu đen với thuốc thử vanillin/H₂SO₄ đặc 1 %. ESI-MS: m/z 819,2 [M + Na]⁺ (C₄₂H₆₈O₁₄Na). ¹H-NMR (CD₃OD, ppm): δ 0,8 (3H, s), 0,86 (3H, s), 0,89 (3H, s), 0,97 (3H, s), 0,98 (3H, s), 1,07 (3H, s), 1,38 (3H, s) (23-CH₃, 24-CH₃, 25-CH₃, 26-CH₃, 27-CH₃, 29-CH₃, 30-CH₃), 3,0 (1H, dd, J = 14,5 Hz, 4,0 Hz, H-3), 3,17-3,43 (8H, m, H-2', H-3', H-4', H-5', H-2", H-3", H-4", H-5"), 3,68 (2H, dd, J = 12,0 Hz, 5,5 Hz, H-6'a, H-6"a), 3,83 (1H, t, J = 12,0 Hz, H-6'b), 3,84 (1H, t, J = 12,0 Hz, H-6"b), 4,34 (1H, d, J = 7,5 Hz, H-1"), 4,5 (1H, s br, H-16), 5,33 (1H, t, *J* = 3,0 Hz, H-12), 5,36 (1H, d, *J* = 8,0 Hz, H-1'). ¹³C-NMR/DEPT (CD₃OD, ppm): δ 16,1 (q, C-25), 17,0 (q, C-24), 17,8 (q, C-26), 19,3 (t, C-6), 24,5 (t, C-11), 25,1 (q, C-30), 27,1 (t, C-2), 27,3 (q, C-27), 28,6 (q, C-23), 31,3 (s, C-20), 31,6 (t, C-22), 33,3 (q, C-29), 34,2 (t, C-7), 36,3 (t, C-21), 36,4 (t, C-15), 37,9 (s, C-10), 39,9 (s, C-8), 40,2 (t, C-1), 40,9 (s, C-4), 42,2 (d, C-18), 42,7 (s, C-14), 47,8 (t, C-19), 48,2 (d, C-9), 50,1 (s, C-17), 57,2 (d, C-5), 62,5 (t, C-6"), 62,8 (t, C-6'), 71,2 (d, C-4"), 71,7 (d, C-4'), 74,0 (d, C-16), 74,9 (d, C-2"), 75,7 (d, C-2'), 77,7 (d, C-5"), 78,2 (d, C-5'), 78,3 (d, C-3"), 78,7 (d, C-3'), 90,9 (d, C-3), 95,8 (d, C-1"), 106,7 (d, C-1'), 123,7 (d, C-12), 144,6 (s, C-13), 177,3 (s, C-28).

Eclalbasaponin II (4): Bột vô định hình màu trắng. $R_f 0,65$ (TLC, silica gel, EtOAc-H₂O-HCOOH 85:15:10, v:v:v), vệt chất hiện màu tím với thuốc thử vanillin/H₂SO₄ đặc 1 %. ESI-MS: m/z 635,3 ([M+H]⁺) (C₃₆H₅₉O₉), 657,0 ([M+Na]⁺) (C₃₆H₅₈O₉Na). ¹H-NMR (CD₃OD, ppm): δ 0,8 (3H, s, 26-CH₃), 0,87 (3H, s, 24-CH₃), 0,9 (3H, s, 25-CH₃), 0,98 (3H, s, 29-CH₃), 0,99 (3H, s, 30-CH₃), 1,08 (3H,

s, 24-CH₃), 1,39 (3H, s, 27-CH₃), 3,03 (1H, d, J =14,5 Hz, 4,0 Hz, H-3), 3,19-3,38 (4H, H-2', H-3', H-4', H-5'), 3,68 (1H, dd, J = 12,0 Hz, 5,0Hz, H-6'a), 3,86 (1H, dd, J = 12.0 Hz, 2,0 Hz, H-6'b), 4,34 (1H, d, J = 7,5 Hz, H-1'), 4,56 (1H, s br, H-16), 5,32 (1H, t, J = 3,5 Hz, H-12). ¹³C-NMR/DEPT (CD₃OD, ppm): δ 16,1 (q, C-25), 17,0 (q, C-24), 17,8 (q, C-26), 19,3 (t, C-6), 24,5 (t, C-11), 24,9 (q, C-30), 27,1 (t, C-2), 27,3 (q, C-27), 28,6 (q, C-23), 31,4 (s, C-20), 32,6 (t, C-22), 33,4 (q, C-29), 34,3 (t, C-7), 36,3 (t, C-15), 36,6 (t, C-21), 37,9 (s, C-10), 39,9 (t, C-1), 40,2 (s, C-4), 40,7 (s, C-8), 42,1 (d, C-18), 42,7 (s, C-14), 47,7 (t, C-19), 48,2 (d, C-9), 49,8 (s, C-17), 57,2 (d, C-5), 62,9 (t, C-6'), 71,7 (d, C-4'), 75,3 (d, C-16), 75,7 (d, C-2'), 77,7 (d, C-5'), 78,3 (d, C-3'), 90,8 (d, C-3), 106,7 (d, C-1'), 123,5 (d, C-12), 145,1 (s, C-13), 181,5 (s, C-28).

Norwedelolacton (5): Bột vô định hình màu trắng. $R_f 0,21$ (TLC, silica gel, EtOAc-H₂O-HCOOH 85:15:10, v:v:v), vệt chất hiện màu vàng với thuốc thử vanilin/H₂SO₄ đặc 1 %. ¹H-NMR (CD₃OD, ppm): δ 6,88 (1H, d, J = 2,0 Hz, H-2), 6,97 (1H, d, J = 2,0 Hz, H-4), 7,18 (1H, s, H-10), 7,36 (1H, s, H-7). ¹³C-NMR (CD₃OD, ppm): δ 99,6 (d, C-10), 100,9 (s, C-6a), 101,8 (d, C-7), 104,6 (s, C-11b), 105,2 (d, C-2), 106,1 (d, C-4), 115,6 (s, C-6b), 145,5 (s, C-8), 147,0 (s, C-10a), 151,4 (s, C-9), 155,8 (s, C-11a), 155,9 (s, C-4a), 156,9 (s, C-3), 160,6 (s, C-1), 160,7 (s, C-6).

Hesperidin (6): Bột vô định hình màu trắng. R_f 0,33 (TLC, silica gel, hệ dung môi EtOAc-H₂O-HCOOH 85:15:10, v:v:v), vệt chất hiện màu đen với thuốc thủ vanilin/H₂SO₄ đặc 1 %. ¹H-NMR (DMSOd₆, ppm): δ 1,09 (3H, d, J = 6,0 Hz, 6"'-CH₃), 2,78 (1H, dd, J = 17,0 Hz, 3,0 Hz, H-3a), 3,12-3,83 (11H, m, H-3b, H-2", H-3", H-4", H-5", 2H-6", H-2"', H-3"'', H-4"'', H-5"'), 3,78 (3H, s, 4'-OCH₃), 4,53 (1H, s, H-1"'), 4,97 (1H, d, J = 7,5 Hz, H-1"), 5,5 (1H, d, J = 12,0 Hz, 3,0 Hz, H-2), 6,13 (1H, d, J = 2,0 Hz, H-6), 6,14 (1H, d, J = 2,0 Hz, H-8), 6,9-6,96 (3H, m, H-2', H-5', H-6'). ¹³C-NMR/DEPT (DMSO-d₆, ppm) (2S): δ 17,8 (q, C-6"'), 42,06 (t, C-3), 55,8 (q, 4'- OCH₃), 66,1 (t, C-6"), 68,3 (d, C-5""), 70,3 (d, C-2"'), 70,7 (d, C-3"'), 70,8 (d, C-4"), 72,1 (d, C-4"'), 73,0 (d, C-2"), 75,6 (d, C-3"), 76,3 (d, C-5"), 78,4 (d, C-2), 95,6 (d, C-8), 96,5 (d, C-6), 99,6 (d, C-1"), 100,6 (d, C-1"'), 103,4 (d, C-10), 112,2 (d, C-5'), 114,2 (d, C-2'), 117,9 (d, C-6'), 131,0 (s, C-1'), 146,5 (s, C-3'), 148,0 (s, C-4'), 162,6 (s, C-9), 163,1 (s, C-5), 165,2 (s, C-7), 196,9 (s, C-4). ¹³C-NMR/DEPT (DMSO- d_6 , ppm) (2R): δ 17,8 (q, C-6"'), 42,1 (t, C-3), 55,8 (q, 4'-OCH₃), 66,07 (t, C-6"), 69,7 (d, C-5"'), 70,3 (d, C-2"'), 70,7 (d, C-3"'), 70,8 (d, C-4"), 72,1 (d, C-4"'), 73,0 (d, C-2"), 75,6 (d, C-3"), 76.3 (d, C-5"), 78,38 (d, C-2), 95,6 (d, C-8), 96,5 (d, C-6), 99,5 (d, C-1"), 100,6 (d, C-1"'), 103,4 (d, C-10), 112,1 (d, C-5'), 114,1 (d, C-2'), 117,8 (d, C-6'), 130,96 (s, C-1'), 146,48 (C-3'), 147,98 (s, C-4'), 162,5 (s, C-9), 163,0 (s, C-5), 165,1 (s, C-7), 196,9 (s, C-4).

3. KẾT QUẢ VÀ THẢO LUẬN

Qua các nghiên cứu phân lập các phần chiết ít phân cực n-hexan và diclorometan từ thân cây Cỏ mực chứa chủ yếu β -sitosterol (1). Phân tách phần chiết etyl axetat trên silica gel với hệ ba dung môi *n*-hexan-EtOAc-HCOOH cho môt lương lớn methyl gallat (2). Một qui trình phân tách các hợp chất phân cực sử dung kết hợp Diaion HP-20 và silica gel đã được áp dụng cho phần chiết nước để phân lập eclalbasaponin I (3). Các phân tích TLC cho thấy sư tương đối giống nhau về thành phần của các phần chiết thân và lá cây Cỏ mực của mẫu lần 1. Do đó, để có thể nghiên cứu hệ thống hơn các hợp chất phân cực từ cây Cỏ mực, một lượng lớn phần trên mặt đất của cây Cỏ mực (mẫu lần 2) đã được phân tách theo các qui trình tương tư của mẫu lân 1. Kết quả là ngoài chất 1 cũng được phát hiện chủ yếu trong các phần chiết n-hexan và diclorometan, eclalbasaponin II (4) và norwedelolacton (5) đã được phân lập từ phần chiết etyl axetat và hesperidin (6) từ phần chiết nước.

Chất 1 được nhận dạng là β -sitosterol qua phân tích TLC và co-TLC với chất chuẩn. Chất 2 có các dữ kiện phổ NMR phù hợp với của metyl gallat. Norwedelolacton (5) đã được nhận dạng từ việc so sánh các dữ kiện phổ NMR với của tài liệu tham khảo [11].

Các chất **3** và **4** được phân lập dưới dạng bột vô định hình màu trắng. Phổ ESI-MS (+) của **3** cho pic giả ion phân tử ở m/z 819,2 ($[M + Na]^+$) cho giả thiết về một công thức phân tử $C_{42}H_{68}O_{14}$. Phổ ESI-MS (+) của **4** cho các pic giả ion phân tử ở m/z 635,3 ($[M + H]^+$) và 657,0 ($[M+Na]^+$) cho giả thiết về một công thức phân tử $C_{36}H_{58}O_9$.

Phổ ¹H-NMR của **3** cho thấy có 7 nhóm metyl bậc ba dưới dạng singlet (7s) ở $\delta_{\rm H}$ 0,8, 0,86, 0,89, 0,97, 0,98, 1,07 và 1,38; hai nhóm oxymethin ở $\delta_{\rm H}$ 3.0 (1H, dd, J = 14.5 Hz, 4.0 Hz) và 4.5 (1H, s br), một proton olefinic của một nối đôi thể ba lần ở $\delta_{\rm H}$ 5,33 (1H, t, J = 3,0 Hz) và 2 proton anomeric của 2 nhóm glucopyranosyl ở $\delta_{\rm H}$ 4,34 (1H, d, J = 7.5 Hz) và 5,36 (1H, d, J = 8,0 Hz). Phổ ¹³C-NMR và DEPT của 3 bao gồm 42 cacbon trong số đó có 30 cacbon của một khung triterpenoid và 12 carbon của 2 nhóm glucopyranosyl. Triterpenoid sapogenin chứa 7 nhóm metyl (7q) ở $\delta_{\rm C}$ 33,3, 28,6, 27,3, 25,1, 17,8, 17,0 và 16,1; 9 nhóm metylen (9t) ở $\delta_{\rm C}$ 47,8, 40,2, 36,4, 36,3, 34,2, 31,6, 27,1, 24,5 và 19,3; 5 nhóm methin (5d) ở $\delta_{\rm C}$ 90,9, 74,0, 57,2, 48,2 và 42,2 trong số đó có 2 nhóm oxymethin ($\delta_{\rm C}$ 90,9 và 74,0); 6 C bậc bốn (6s) 50,1, 42,7, 40,9, 39,9, 37,9 và 31,3; một nối đôi thể 3 lần ở $\delta_{\rm C}$ 123,7 (d) và 144,6 (s) và một nhóm cacbonyl este ở $\delta_{\rm C}$ 177,3 (s). Các tín hiệu cộng hưởng từ cacbon 13 của 2 nhóm glucopyranosyl xuất hiện ở $\delta_{\rm C}$ 106,7 (d), 78,7 (d), 78,2 (d), 75,7 (d), 71,7 (d) và 62,8 (t) và 95,8 (d), 78,3 (d), 77,7 (d), 74,9 (d), 71,2 (d) và 62,5 (t). Các cấu hình β của 2 nhóm glucopyranosyl được xác định dựa trên hằng số tương tác (J = 7,5 Hz và 8,0 Hz) của các proton anomeric. Các dữ kiện phô NMR của chât 3 xác định một cấu trúc glycosid của một axit olean-12-en-28-oic. Các nhóm β -D-glucopyranosyl được xác định là liên kết với C-3 và C-28 dựa vào các giá trị δ_{C-3} và δ_{C-28} và hóa lập thể H-3 α đã được xác định nhờ hằng số tương tác J = 14,5 Hz của H-3. Các dữ kiện phổ NMR của 3 phù hợp với cấu trúc của eclalbasaponin I [9].

Phổ ¹H-NMR của **4** cho thấy sự có mặt của 7 nhóm metyl bậc ba dưới dạng singlet (7s) ở $\delta_{\rm H}$ 0,8, 0,87, 0,9, 0,98, 0,99, 1,08 và 1,39; 2 nhóm oxymethin ở $\delta_{\rm H}$ 3,03 (1H, d, J = 14,5 Hz, 4,0 Hz) và 4,56 (1H, s br); một proton olefinic của một nối đôi thế ba lần ở $\delta_{\rm H}$ 5,32 (1H, t, J = 3,5 Hz) và một proton anomeric của một nhóm glucopyranosyl ở $\delta_{\rm H}$

Phan Minh Giang và cộng sự

4,34 (1H, d, J = 7,5 Hz). Phổ ¹³C-NMR và DEPT của 4 bao gồm 36 carbon trong số đó có 30 cacbon của một khung tritecpenoid và 6 cacbon của một nhóm glucopyranosyl. Tritecpenoid sapogenin chứa 7 nhóm metyl (7q) ở $\delta_{\rm C}$ 33,4, 28,6, 27,3, 24,9, 17,8, 17,0 và 16,1; 9 nhóm metylen (9t) ở $\delta_{\rm C}$ 47,7, 39,9, 36,6, 36,3, 34,3, 32,6, 27,1, 24,5 và 19,3; 5 nhóm methin (5d) ở $\delta_{\rm C}$ 90,8, 75,3, 57,2, 48,2 và 42,1 trong số đó có 2 nhóm oxymethin ($\delta_{\rm C}$ 90,8 và 75,3); 6 C bậc bốn (6s) ở $\delta_{\rm C}$ 49,8, 42,7, 40,7, 40,2, 37,9 và 31,4; một nổi đôi thể 3 lần ở $\delta_{\rm C}$ 123,5 (d) và 145,1 (s) và một nhóm cacbonyl axit cacboxylic ở $\delta_{\rm C}$ 181,5 (s). Các tín hiệu cộng hưởng từ cacbon 13 của nhóm glucopyranosyl xuất hiện ở $\delta_{\rm C}$ 106,7 (d), 78,3 (d), 77,7 (d), 75,7 (d), 71,7 (d) và 62,9 (t). Cấu hình β của nhóm D-glucopyranosyl được xác đinh dựa trên hẳng số tương tác (J = 7.5 Hz) của proton anomeric. Sự phù hợp của các dữ kiện phố NMR thuộc khung tritecpenoid của chất 4 với của eclalbasaponin I (3) và sư xuất hiện của một nhóm axit cacboxylic ($\delta_{\rm C}$ 181,5) cho thấy nhóm glucopyranosyl duy nhất của 4 phải ở vị trí C-3. Trên cơ sở các phân tích độ chuyển dịch hóa học và hẳng số tương tác (J = 14,5)Hz và 4,0 Hz) hóa lập thể ở C-3 và C-16 của hợp chất này phù hợp với của chất eclalbasaponin I. Các dữ kiện phổ này hoàn toàn phù hợp với cấu trúc của saponin tritecpenoid eclalbasaponin II [9]. Các hợp chất 3 và 4 đã được phân lập lần đầu tiên từ cây Eclipta alba của Nhật Bản và được thông báo là có trong cây Cỏ mực trồng ở miền Nam [9].

Hợp chất 6 được phân lập dưới dang bột vô định hình màu trắng. Phổ ¹H-NMR của 6 cho các tín hiệu của 2 proton tương tác *ortho* của vòng thơm ở $\delta_{\rm H}$ 6,13 (1H, d, J = 2,0 Hz) và 6,14 (1H, d, J = 2,0 Hz), một vòng benzen thể ba lần với 3 tín hiệu proton cộng hưởng ở $\delta_{\rm H}$ 6,9-6,96 (3H, m), và một nhóm oxymethin ở $\delta_{\rm H}$ 5,5 (1H, d, J = 12,0 Hz, 3,0 Hz) liên kết với một nhóm metylen ở vị trí α của một nhóm cacbonyl ở $\delta_{\rm H}$ 2,78 (1H, dd, J = 17,0 Hz, 3,0 Hz) và 3,12-3,83 (1H, m). Các tín hiệu công hưởng từ proton này xác định một cấu trúc flavanon cho chất 6. Các tín hiệu khác thuộc về 2 gốc đường với các proton anomeric ở $\delta_{\rm H}$ 4,53 (1H, s) và 4,97 (1H, d, J = 7,5 Hz) và một nhóm metoxy ở $\delta_{\rm H}$ 3,78 (3H, s). Phổ ¹³C-NMR của 6 khẳng định cấu trúc flavanon với các tín hiệu cộng hưởng từ cacbon 13 đáng chú ý nhất của vòng A thế 5,7-dioxy [$\delta_{\rm C}$ 95,6 (d, C-8), 96,5 (d, C-6), 103,4 (d, C-10), 162,6 (s, C-9), 163,1 (s, C-5) và 165,2 (s, C-7)], vòng B thế 3,4-dioxy [$\delta_{\rm C}$ 112,2 (d, C-5'), 114,2 (d, C-2'), 117,9 (d, C-6'), 131,0 (s, C-1'), 146,5 (s, C-3') và 148,0 (s, C-4')], và vòng C của một flavanon với nhóm -CH₂-CHO- $[\delta_{\rm C}$ 78,4 (d, C-2) và 42,1 (t, C-3)] và nhóm cacbonyl C-4

TCHH, T. 53(1), 2015

 $[\delta_{\rm C} 196,9 \text{ (s, C-4)}]$. Độ chuyển dịch hóa học $(\delta_{\rm C}$ 196,9) của nhóm cacbonyl cho thấy nhóm này liên kết với nhóm 5-OH qua một liên kết hydro, trong trường hợp không có liên kết hydro $\delta_{C-4} < 180$. Các tín hiệu cacbon 13 còn lại phù hợp với của một nhóm glucopyranosyl [$\delta_{\rm C}$ 66,1 (t, C-6"), 70,8 (d, C-4"), 75,6 (d, C-3"), 76,3 (d, C-5") và 99,6 (d, C-1")] và một nhóm rhamnopyranosyl [$\delta_{\rm C}$ 17,8 (q, C-6"'), 68,3 (d, C-5"'), 70,3 (d, C-2"'), 70,7 (d, C-3"'), 72,1 C-4"') và 100,6 (d, C-1"')]. (d, Nhóm rhamnopyranosyl liên kết với nhóm glucopyranosyl ở vị trí C-6" gây ra sự chuyển dịch về phía trường thấp của C-6" ($\delta_{\rm C}$ 66,1). Các cấu hình α cho nhóm rhamnopyranosyl và β cho glucopyranosyl đã được xác đinh từ hằng số tương tác của các proton anomeric (J tương ứng là s br và 7,5 Hz). Vị trí của các nhóm rutinosid (α -L-rhmanopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl) và methoxy [$\delta_{\rm C}$ 55,8 (q)] đã được xác định là ở C-7 và C-4 qua sự so sánh các dữ kiện phổ NMR với các hợp chất flavanon glycosid. Do đó, cấu trúc của chất 6 đã được xác đinh là epime 2S của hesperetin 7-O-rutinosid (hesperidin) [12]. Các dữ kiên phổ ¹³C-NMR còn chứng minh sư tồn tai của đồng phân epimer 2R của hesperidin. Các epimer này trong thực tế không khác biết nhiều về các dữ kiện phố ¹H-NMR [12], tuy nhiên sự phân tích kỹ các tín hiệu phổ cacbon 13 cho thấy một số tín hiệu xuất hiện ở dạng kép (doublet) cho phép nhận dạng sự tồn tại của epimer 2R đặc biệt là các tín hiệu cộng hưởng ở vòng B [$\delta_{\rm C}$ 112,1 (d, C-5'), 114,1 (d, C-2'), 117,8 (d, C-6'), 130,96 (s, C-1'), 146,48 (C-3') và 147,98 (s, C-4')], các tín hiệu ở vòng A [$\delta_{\rm C}$ 162,5 (s, C-9), 163,0 (s, C-5) và 165,1 (s, C-7)] và một số tín hiệu của các nhóm đường [$\delta_{\rm C}$ 66,07 (t, C-6"), 69,7 (d, C-2"') và 99,5 (d, C-1")]. Sư xuất hiện của các chất chuyển hóa thứ cấp trong thiên nhiên thường được cho là theo các con đường đặc thù về lập thể vì sự tham gia của các enzym trong các bước của con đường sinh tổng hợp. Tuy nhiên các đồng phân lập thể vẫn có thể cùng xuất hiện như ví dụ về các đồng phân epimer 2S và 2R của các flavanon do là sản phẩm phụ của các quá trình gây bởi các enzym nhất định và cần có các phương pháp để nhận biết các chất này. Trong trường hợp của hesperidin F. Maltese sử dụng phổ ¹H-NMR để nhận biết giữa 2 đồng phân epimer 2S và 2R [12]. Tuy nhiên, chỉ có một vài giá trị $\delta_{\rm H}$ phân biệt nhau ở đơn vị 0,01 ppm có thể quan sát được trên phổ ¹H-NMR trong dung môi DMSO- d_6 [12] và do đó phổ ¹³C-NMR đã được xác đinh trong trường hợp của hesperidin là phương pháp nhanh và tin cậy để nhận biết các epimer 2S và 2R của nó.

4. KẾT LUẬN

Nghiên cứu đã xây dựng được qui trình phân lập được các chất saponin và một số hợp chất phân cực khác thuộc các lớp coumestan và flavonoid glycosid từ cây Cỏ mực trồng ở miền Bắc Việt Nam. Metyl gallat và hesperidin là các thành phần hóa học mới được phát hiện trong cây này. Các nghiên cứu tiếp các chất phân cực của cây Cỏ mực đang được thực hiện.

Lời cám ơn. Công trình nghiên cứu này được hoàn thành với sự tài trợ của Quỹ phát triển Khoa học và Công nghệ Quốc gia (NAFOSTED), Hà Nội, Việt Nam, mã số 104.01.137.09.

TÀI LIỆU THAM KHẢO

- Võ Văn Chi. *Từ điển cây thuốc Việt Nam*, Nxb. Y học, Thành phố Hồ Chí Minh (1997).
- 2. Krishnaswamy N. R., Seshadri T. R., Sharma B. R. *The structure of a new polythienyl from Eclipta alba*, Tetrahedron Letters, **35**, 4227-4230 (1966).
- Singh P., Sharma A. K., Joshi K. C., Bohlmann F. A further dithienylacetylene from Eclipta erecta, Phytochemistry, 24, 615-616 (1985).
- Govindachari T. R., Premila M. S. *The benzofuran* norwedelic acid from Wedelia calendulaceae, Phytochemistry, 24, 3068-3069 (1985).
- Yahara S., Ding N., Nohara T., Masuda K., Ageta H., *Taraxastane glycosides from Eclipta alba*, Phytochemistry, 44, 131-135 (1997).
- Yahara S., Ding N., Nohara T., Oleanane glycosides from Eclipta alba, Chem. Pharm. Bull., 42, 1336-1338 (1994).
- Lee M. K., Ha N. R., Yang H., Sung S. H., Kim Y. C., Stimulatory constituent of Eclipta prostrata on mouse osteoblast differentiation, Phytother. Res., 23, 129-131 (2009).
- Abdel-Kader M. S., Bahler B. D., Malone S., Werkhoven M. C. M., van Troon F., David, Wisse J. H., Bursuker I., Neddermann K. M., Mamber S. W., Kingston D. G. I. DNA-damaging steroidal alkaloids from Eclipta alba from the Suriname rainforest, J. Nat. Prod., 61, 1202-1208 (1998).
- Phùng Văn Trung, Nguyễn Tấn Phát, Phan Hiền Lương, Nguyễn Ngọc Hạnh. Khảo sát thành phần hóa học cao etyl axetat cỏ mực (Eclipta prostrata (L.)L.) trồng tại Phú Yên, Tạp chí Hóa học, 50, 281-283 (2012).

- Lee M. K., Ha N. R., Yang H., Sung S. H., Kim G. H., Kim Y. C., Antiproliferative activity of triterpenoids from Eclipta prostrata on hepatic stellate cells, Phytomedicine, 15, 775-780 (2008).
- 11. Li C. C., Xie Z. X., Zhang Y. D., Chen J. H., Yang Z.,

Liên hệ: Phan Minh Giang

Khoa Hóa học, Trường Đại học Khoa học Tự nhiên Đại học Quốc gia Hà Nội Số 19, Lê Thánh Tông, Hoàn Kiếm, Hà Nội, Việt Nam E-mail: phanminhgiang@yahoo.com.

Total synthesis of wedelolactone, J. Org. Chem., **68**, 8500-8504 (2003).

12. Maltese F., Erkelens C., van der Kooy F., Choi Y. H., Verpoorte R. *Identification of natural epimeric flavanone glycosides by NMR spectroscopy*, Food Chemistry, **116**, 575-579 (2009).