NGHIÊN CỨU ẢNH HƯỞNG CỦA NHIỆT ĐỘ NUNG, TỶ LỆ MOL Ce-Ti-Si ĐẾN SỰ HÌNH THÀNH PHA OXIT HỒN HỢP CeO₂-TiO₂-SiO₂ ĐƯỢC TỔNG HỢP BẰNG PHƯƠNG PHÁP ĐỐT CHÁY GEL POLYVINYL ANCOL

Đào Ngọc Nhiệm^{*}, Lưu Minh Đại, Nguyễn Đức Văn, Phạm Ngọc Chức, Đoàn Trung Dũng, Nguyễn Thị Hà Chi

Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam

Đến Tòa soạn 25-02-2014

Abstract

The nanosized CeO₂-TiO₂-SiO₂ mixed oxide powder has been synthesized by the gel combustion method using polyvinyl alcohol (PVA) as polymer basic and mixture of cerium (IV) nitrate, titanium (III) chloride and silane. Effects of preparative parameters on the phase formation of CeO₂-TiO₂-SiO₂ such as Ce-Ti-Si molar ratio, calcination temperature have been investigated and discussed. The results showed that, for the optimized procedure with pH = 1, temperature of gel formation of 80 °C, molar ratio of metal over polyvinyl alcohol of 1/3, molar ratio of Ce-Ti-Si of 1-1-8. The CeO₂-TiO₂-SiO₂ mixed oxides were obtained with the averge grain size of nanopowders up to 97 nm after calcined at 850 °C for 2 hours.

Keywords: CeO₂-TiO₂-SiO₂ mixed oxides, cerium(IV) nitrate, titanium (III) chloride, silane, polyvinyl alcohol, combustion method.

1. MỞ ĐÂU

Hiện nay, sự phá hỏng tầng ozon bao phủ quanh trái đất làm tăng bức xạ UV và tác hại ngày càng tăng đối với loài người. Vì vậy, việc bảo vệ khỏi bức xạ UV được sự quan tâm của các nhà khoa học trong nhiều lĩnh vực khác nhau. Trong thời gian gần đây vật liệu nano có chứa CeO₂ để hấp thụ tia UV là một trong những đối tượng nghiên cứu khá sôi nổi của các nhà khoa học [1-3]. Theo các kết quả công bố về việc sử dụng kết hợp oxit CeO₂ và oxit TiO₂ không những chỉ tạo ra vật liệu hấp thụ hoàn toàn tia UV mà với sự có mặt của oxit CeO₂ còn làm giảm thiểu khả năng quang oxi hóa của TiO₂ đối với các màng nhựa polyme [1-3].

Khi nghiên cứu về oxit hỗn hợp hệ Ce-Ti kích thước nanomet [4-9] thấy rằng tỷ lệ mol và nhiệt độ nung là hai yếu tố ảnh hưởng lớn tới cấu trúc pha tinh thể và tính chất của vật liệu.

Do vậy, trong bài báo này chúng tôi sẽ tập trung nghiên cứu ảnh hưởng của nhiệt độ nung và tỷ lệ mol Ce/Ti/Si tới sự hình thành pha tinh thể của CeO₂-TiO₂-SiO₂ được tổng hợp bằng phương pháp đốt cháy gel PVA nhằm định hướng ứng dụng vật liệu này để hấp thụ tia UV trong tương lai.

2. THỰC NGHIỆM

2.1. Hoá chất và dụng cụ

Các hóa chất đầu vào được sử dụng là dung dịch TiCl₃ (dung dịch TiCl₃ dễ thao tác hơn TiCl₄ trong quá trình thí nghiệm. Hơn nữa, việc tổng hợp các vật liệu chứa titan đi từ TiCl₃ vẫn chưa được nghiên cứu ở Việt Nam), Ce(NO₃)₄, PVA, silan, NH₄OH, dung dịch HCl, NaOH đều có độ sạch phân tích.

Cốc chịu nhiệt loại 50 ml, 100 ml, bình định mức 100 ml, 500 ml, 1000 ml, pipet, máy khuấy từ, tủ sấy, lò nung.

2.2. Tổng hợp vật liệu

Cho PVA vào cốc 100 ml, thêm nước cất thích hợp và khuấy liên tục trên máy khuấy từ ở 80 °C cho đến khi tan hết PVA. Thêm một lượng dung dịch Ce(NO₃)₄; TiCl₃ và silan (tỷ lệ mol của (Ce-Ti-Si)/PVA là 1/3, tỷ lệ thành phần mol CeO₂-TiO₂-SiO₂ khác nhau, pH tạo gel là 1). Dung dịch được khuấy cho đến khi hệ gel đồng nhất được tạo thành tại nhiệt độ 80 °C trong 4 giờ. Gel được sấy ở 120 °C trong 8 giờ. Mẫu sau khi xử lý nhiệt ở các nhiệt độ khác nhau được phân tích thành phần, cấu trúc pha

TCHH, T. 52(4), 2014

trên máy Siemens D 5000, hình thái học của mẫu được thực hiện trên kính hiển vi điện tử quét (SEM) S-JED-4800 và phân bố kích thước hạt trung bình trên máy Zetasizer 90.

2.3. Phương pháp nghiên cứu

Các giản đồ nhiễu xạ Ronghen được ghi trên máy Siemens D 5000 (CHLB Đức), bức xạ CuK_{α}.

Giản đồ phân tích nhiệt vi sai TGA-DSC được ghi trên máy Labsys Evo-Setararm (Pháp) tốc độ gia nhiệt 10°C/phút trong môi trường không khí.

Hình thái học của mẫu được thực hiện trên kính hiển vi điện tử quét (SEM) S-JED-4800 (Nhật Bản).

Giản đồ phân bố kích thước hạt trung bình được đo trên máy Zetasizer 90 (Nhật Bản).

3. KẾT QUẢ VÀ THẢO LUẬN

3.1. Ảnh hưởng của tỷ lệ mol Ce-Ti-Si đến sự hình thành pha CeO₂-TiO₂-SiO₂

Theo các kết quả nghiên cứu [2, 5] thấy rằng ảnh hưởng của tỷ lệ mol Ce-Ti-Si đến sự hình thành pha CeO₂-TiO₂-SiO₂ là rất lớn. Do vậy trong phần này chúng tôi tiến hành tổng hợp mẫu với các tỷ lệ thành phần mol CeO₂-TiO₂-SiO₂ thay đổi theo thứ tự lần lượt tương ứng là 2,5%-2,5%-95%; 5%-5%-90%; 7,5%-7,5%-85% và 10%-10%-80% (theo mol); nhiệt độ tạo gel là 80 °C; tạo gel ở pH = 1; nung ở nhiệt độ 550 °C trong 2 giờ. Các mẫu được đem phân tích nhiễu xạ tia X kết quả thu được đưa ra ở hình 1.

* pha của CeO₂ Hình 1: Giản đồ nhiễu xạ tia X của mẫu có tỷ lệ mol Ce-Ti-Si khác nhau: (a) 2,5%-2,5%-95%; (b) 5%-5%-90%; (c) 7,5%-7,5%-85% và (d) 10%-10%-80%

Trên giản đồ nhiễu xạ tia X ta nhận thấy mẫu có thành phần CeO_2 -Ti O_2 -Si O_2 là 2,5%-2,5%-95% được nung ở 500 °C trong 2 giờ vẫn chưa xuất hiện pha kết tinh tinh thể đặc trưng của CeO_2 ,Ti O_2 và

SiO₂. Khi thành phần CeO₂-TiO₂-SiO₂ tăng từ 5%-5%-90% đến 10%-10%-80% đều thu được pha kết tinh đặc trưng của CeO₂ nhưng vẫn chưa xuất hiện pha kết tinh của SiO₂ và TiO₂.

3.2. Ảnh hưởng của nhiệt độ nung đến sự hình thành pha CeO₂-TiO₂-SiO₂

Điều kiện chế tạo mẫu như phần trên với tỷ lệ thành phần mol Ce-Ti-Si là 10%-10%-80%. Mẫu gel được đem phân tích nhiệt trên máy Labsys Evo-Setararm (Pháp) tốc độ gia nhiệt 10 °C/phút trong môi trường không khí. Kết quả phân tích được biểu diễn ở hình 2.

DSC của mẫu gel Ce-Ti-Si-PVA

Trên giản đồ phân tích nhiệt trên đường TGA hình 2 cho thấy nhiệt độ < 200 °C có sự giảm khối lượng 5,24 % tương ứng với sự thu nhiệt mạnh ở 86,73 °C trên đường DSC. Sự mất khối ở nhiệt độ < 200 °C là quá trình mất nước tự do và nước kết tinh trong mẫu gel. Trong khoảng nhiệt độ từ 200 °C đến 600 °C có sư giảm khối lương 4,07 % tương ứng với píc tỏa nhiệt yếu trên đường DSC, sư giảm khối này có thể gán cho sự đốt cháy phân hủy gốc nitrat, gốc clorat, gốc hidro cacbon trong mẫu gel PVA và đồng thời xảy ra sự chuyển pha TiO_2 vô định hình thành pha kết tinh tinh thể TiO₂. So với trường hợp tổng hợp CeO₂, TiO₂ bằng phương pháp đốt cháy gel [10, 11]. Sự hình thành pha của trong hỗn hợp oxit này xảy ra ở nhiệt đô cao hơn (≈ 200 °C). Khi nhiệt $d\hat{o} > 600$ °C trên đường TGA gần như không thấy có sự giảm khối lượng có thể gán cho sự tạo thành pha oxit hỗn hợp của CeO2-TiO2-SiO2 đã được hình thành. Còn ở 781,37 °C trên đường DSC có 1 pic thu nhiệt manh có thể đây là quá trình chuyển pha SiO₂ vô đinh hình thành pha tinh thể kết tinh SiO₂.

TCHH, T. 52(4), 2014

Để làm rõ ảnh hưởng của nhiệt độ nung đến sự hình thành pha tinh thể của oxit hỗn hợp CeO_2 -TiO_2-SiO_2. Dựa vào kết quả phân tích nhiệt vi sai ở phần trên làm cơ sở để nung mẫu gel ở 550 °C, 650°C, 750 °C và 850 °C trong 2 giờ. Các mẫu sau nung được đem phân tích thành phần pha trên máy Siemens D 5000. Kết quả phân tích thành phần pha được ghi lại ở hình 3.

* pha của CeO₂; \$ pha của TiO₂; • pha của SiO₂

Hình 3: Giản đổ nhiễu xạ tia X của mẫu có tỷ lệ mol Ce-Ti-Si là 10%-10%-80% nung ở nhiệt độ khác nhau: (a) 550°C; (b) 650°C; (c) 750°C và (d) 850°C

Từ kết quả phân tích nhiễu xạ tia X hình 3 nhận thấy, mẫu nung ở nhiệt độ 550 °C pha ở dạng vô định hình một phần nhỏ pha kết tinh của pha CeO₂. Khi mẫu nung ở nhiệt độ 650 °C và 750 °C xuất hiện hai pha kết tinh tinh thể đặc trưng của CeO₂ và TiO₂. Khi nung ở nhiệt độ 850 °C thu được pha CeO₂, TiO₂ dạng anatat và pha SiO₂ dạng cristobalit điều này hoàn toàn phù hợp với kết quả phân tích nhiệt ở trên và tương tự như kết quả nghiên cứu [4].

Do vậy, để thu được oxit hỗn hợp CeO_2 -Ti O_2 -Si O_2 cần nung mẫu ở 850 °C trong 2 giờ.

Mẫu được tổng hợp ở điều kiện: tỷ lệ mol của (Ce-Ti-Si)/PVA là 1/3, tỷ lệ thành phần mol CeO₂-TiO₂-SiO₂ là 10%-10%-80%, pH tạo gel là 1, nhiệt độ gel 80 °C, nung mẫu ở nhiệt độ 850 °C trong 2 giờ được đem xác hình thái học trên máy S-JED-4800 và xác định phân bố kích thước hạt trung bình trên máy Zetasizer. Kết quả phân tích được ghi lại ở hình 4 và 5.

Qua hình 4 nhận thấy, mẫu được tổng hợp bằng phương phương pháp đốt cháy gel PVA với pH tạo gel là 1, nhiệt độ tạo gel 80 °C, tỷ lệ mol kim loại/PVA là 1/3, tỷ lệ mol CeO₂-TiO₂-SiO₂ là 10%-10%-80% nung ở 850 °C trong 2 giờ có kích thước hạt đồng nhất < 50 nm (SEM) và có kích thước hạt trung bình là 97 nm (hình 5). Trong đó sự phân bố kích thước hạt trung bình tập trung thành hai vùng: vùng 1 có kích thước 104,3 nm chiếm 93,7 % và vùng 2 có kích thước 21,43 nm chiếm 6,3 %. Sự khác biệt kích thước hạt nano của hỗn hợp oxit CeO₂-TiO₂-SiO₂ phân tích trên 2 máy S-JED-4800 và Zetasizer ở trên được giải thích là do các hạt nano của hỗn hợp oxit để kết đám với nhau.

Hình 4: Ảnh SEM của mẫu có tỷ lệ mol Ce-Ti-Si là 10%-10%-80% nung ở nhiệt độ 850 °C trong 2 giờ

bình của mẫu có tỷ lệ mol Ce-Ti-Si là 10%-10%-80 % nung ở nhiệt độ 850 °C trong 2 giờ

4. KÉT LUÂN

Đã nghiên cứu ảnh hưởng của nhiệt độ nung, tỷ lệ mol CeO_2 - TiO_2 - SiO_2 đến sự hình thành pha của oxit hỗn hợp CeO_2 - TiO_2 - SiO_2 được tổng hợp bằng phương phương pháp đốt cháy gel PVA.

Oxit hỗn hợp CeO₂-TiO₂-SiO₂ được tổng hợp bằng phương pháp đốt cháy gel PVA ở điều kiện:

TCHH, T. 52(4), 2014

pH tạo gel là 1, nhiệt độ tạo gel 80 °C, tỷ lệ mol kim loại/PVA là 1/3, tỷ lệ mol Ce-Ti-Si = 1-1-8, nung ở 850 °C trong 2 giờ có kích thước hạt đồng nhất < 50 nm (SEM) và kích thước hạt trung bình là 97 nm.

Lời cám ơn: Công trình này nằm trong khuôn khổ của đề tài Khoa học và Công nghệ cấp Bộ Giáo dục và Đào tạo năm 2014-1015, mã số B2014-04-12. Các tác giả xin trân trọng cảm ơn Bộ Giáo dục và Đào tạo đã tài trợ kinh phí cho nghiên cứu này.

TÀI LIỆU THAM KHẢO

- 1. B. Mahltiga, H. Bo⁻ttchera, K. Rauchb, U. Dieckmannb, R. Nitschec, T. Fritzc. *Optimized UV protecting coatings by combination of organic and inorganic UV absorbers*, Thin Solid Films, **485**, 108-114 (2005).
- D. Yuhong, W. Peng, Z. Qingna. CeO₂-TiO₂/SiO₂ Anti-Reflecting and UV-Shielding Double-Functional Films Coated on Glass Substrates Using Sol-Gel Method, Journal of Rare Earths, 25, 64-67 (2007).
- M. A. Sainz, A. Duran and J. M. F. Navarro. UV Highly absorbent coatings with CeO₂ and TiO₂, Journal of Non - Crystalline Solids, **121**, 315-318, 315 North-Holland (1990).
- 4. Đào Ngọc Nhiệm. Nghiên cứu tổng hợp vật liệu nanocompozit trên cơ sở CeO₂-TiO₂ hấp thụ tia UV dùng cho các hệ sơn ô tô, xe máy, Báo cáo tổng kết đề tài cấp Viện HLKH & CNVN (12/2013).

Liên hệ: Đào Ngọc Nhiệm

Viện Khoa học vật liệu, Viện Hàn lâm Khoa học và Công nghệ Việt Nam Số 18, Hoàng Quốc Việt, Cầu Giấy, Hà Nội Email: nhiemdn@ims.vast.vn Điện thoại: 0466747816.

- M. R. Mohammadia, D. J. Fray. Nanostructured TiO₂ - CeO₂ mixed oxides by an aqueous sol-gel process: Effect of Ce:Ti molar ratio on physical and sensing properties, Sensors and Actuators B, 150, 631-640 (2010).
- T. Cao, Y. Li, C. Wang, L. Wei, C. Shao, Y. Liu. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO₂ nanostructures/TiO₂ nanofibers heterostructures, Materials Research, Bulletin, 45, 1406-1412 (2010).
- Nguyễn Đình Bảng và cộng sự. Tổng hợp oxit hỗn hợp TiO₂-CeO₂ có kích thước nanomet bằng phương pháp sol gel, Tạp chí Hóa học, 46(2A), 1-6 (2008).
- Nguyễn Thế Anh, Nguyễn Đình Tuyến. Tổng hợp hoạt tính quang xúc tác của nano oxit TiO₂-CeO₂ bằng phương pháp sol-gel và phương pháp vi nhũ tương trong dung dịch, Tạp chí Hóa học, 47(4A), 582-586 (2009).
- Đào Ngọc Nhiệm, Lưu Minh Đại, Phạm Ngọc Chức, Nguyễn Đức Văn, Đoàn Trung Dung. Tổng hợp oxit hỗn hợp CeO₂-TiO₂ cấu trúc nano bằng phương pháp đốt cháy gel, Tạp chí Hóa học, 50(5B), 71-75 (2012).
- Nguyen Gia Hung, Luu Minh Dai, Vo Quang Mai, Dao Ngoc Nhiem. Low temperature synthesis of nanostructured cerium dioxide by auto combustion process of polyvinyl alcohol-cerium nitrate gel, Journal of Chemistry, 42(4), 444-448 (2004).
- Lưu Minh Đại, Đào Ngọc Nhiệm. Tổng hợp TiO₂ anatat kích thước nanomet bằng phương pháp đốt cháy gel, Tạp chí Hóa học, **48(6)**, 709-713 (2010).