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ABSTRACT 

Mesenchymal stem cells (MSCs) have garnered significant attention in biomedical studies 

due to their remarkable properties, such as self-renewal, differentiation into diverse cell 

types and immune responses. The proliferation and differentiation of MSCs are significantly 

influenced by the ligand-dependent transcription factor known as the aryl hydrocarbon 

receptor (AhR). In order to understand the roles of Ahr in adipose-derived MSCs (AD-

MSCs), we disrupted the Ahr gene in this work using CRISPR/Cas9 gene editing technology. 

The gRNA/Cas9 dual vector and donor vector were introduced into the AD-MSC cell line 

(PT-5006). Green fluorescent protein (GFP) expression and puromycin resistance were used 

to identify the transfected cells. AhR-KO cells were cloned and confirmed by PCR and 

sequencing. By using RT-qPCR, the expression levels of AhR and the Ahr-related gene 

Cyp1B1 were investigated. The results showed that the knocked out of AhR using 

CRISPR/Cas9, resulting significantly decreased expression of 7.69-fold for AhR and 3.70-

fold for Cyp1B1 in the cells. These cell clones and CRISPR/Cas9 vectors could be used as 

tools to investigate the functions of AhR in both AD-MSCs and other cell types. 

Keywords: Adipose-derived MSCs, aryl hydrocarbon receptor, knockout gene, 

CRISPR/Cas9, puromycin selection. 

 

INTRODUCTION 

Mesenchymal stem cells (MSCs) are a 

specific type of stromal cell that have the 

ability to renew themselves, differentiate 

into other types of cells, and regulate 

immunological responses. (Pittenger et al., 

1999). MSCs have been studied in 

biomedical research and cell treatments 

targeting immune-mediated inflammatory 

illnesses over during the past several years 

due to their immunomodulatory properties. 

(Saadh et al., 2023; Müller et al., 2021). 

MSCs balance the inflammatory responses 

by releasing various anti-inflammatory 

agents, such as indoleamine 2,3-
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dioxygenase (IDO), interleukin-10 (IL-10), 

transforming growth factor beta (TGF-β), 

prostaglandin E2 (PGE2), and TNF-

stimulated gene 6 (TSG-6) (Markov et al., 

2021). Adipose-derived stem cells (AD-

MSCs) are mesenchymal stem cells (MSCs) 

that can be harvested through a minimally 

invasive lipectomy procedure (Gimble et al., 

2007). AD-MSCs are the most commonly 

utilized stem cells in cellular therapy due to 

their wide accessibility and unique features, 

including immunosuppressive and 

immunomodulatory properties (Wang et al., 

2018; Zhang et al., 2020). 

The aryl hydrocarbon receptor (AhR) acts as 

a transcription factor that is stimulated by 

ligands. It is known for its ability to control 

cellular reactions to environmental 

contaminants, including dioxins, polycyclic 

aromatic hydrocarbons (PAHs), and various 

phytochemicals (Stockinger et al., 2014). 

Numerous studies have demonstrated that 

AhR is involved in many cellular processes, 

such as cell proliferation, metabolism, and 

immunomodulation (Nguyen et al., 2013; 

Baricza et al., 2016; Riaz et al., 2022). 

Furthermore, recent studies suggest that the 

anti-inflammatory and immunomodulatory 

effects of MSCs can be regulated by ligand-

activated AhR (de Almeida et al., 2017; 

Zhang et al., 2019; Lkhagva-Yondon et al., 

2023). Activating AhR with specific 

agonists, including TCDD, FICZ, 

tryptophan derivatives, and benzo(a)pyrene, 

enhances the expression of the Cyp1a1 and 

Cyp1B1 genes in MSCs (Podechard et al., 

2009; Lewis et al., 2017). Hinden et al. 

showed that pretreatment of MSCs with 

IFN-γ, TGF-β, and kynurenine increased the 

expression of several immunomodulatory 

genes, such as inducible nitric oxide 

synthase (NOS), indoleamine 2,3-

dioxygenase (IDO), cyclooxygenase-2 

(COX2), heme oxygenase 1 (Hmox1), 

leukemia inhibitory factor (LIF), and 

programmed death ligand 1 (PD-L1) 

(Hinden et al., 2015). 

The utilization of CRISPR-Cas9 has led to 

an important evolution in the field of 

genome engineering, since it allows for 

accurate and effective editing of DNA 

sequences. (Prasad et al., 2021). This 

method can be utilized to disrupt, knock out 

(KO), or knock in genes (Nishiga et al., 

2021). The CRISPR/Cas9 technology has 

been employed to genetically modify several 

types of human stem cells, therefore 

enhancing their therapeutic capacity 

(Hazrati et al., 2022; Han et al., 2024). 

Given the multiple functions of AhR and its 

effects on MSCs, employing CRISPR/Cas9 

technology to knock out or knock in the AhR 

gene could be beneficial for further 

exploring the precise roles of AhR in MSCs. 

This work employed CRISPR/Cas9 

technology to disrupt the AhR gene (AhR-

KO) in AD-MSCs, creating model cell lines 

for further investigations into the 

consequences of AhR depletion in MSCs. 

MATERIALS AND METHODS 

Cell culture 

The AD-MSC cell line PT-5006 was 

purchased from Lonza (USA). AD-MSCs 

were cultured in DMEM supplemented with 

10% fetal bovine serum, penicillin (100 

units/ml), and streptomycin (100 µg/ml). 

The cells were seeded in a 6-well plate (2 × 

105 cells) with 3 mL of medium per well and 

stabilized for 24 hours in an incubator at 

37 °C and 5% CO2. The cells were cultured 

and harvested for subsequent experiments as 

described previously (Tien et al., 2023). 
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Generation of AD-MSC AhR-KO cell 

clones 

The AhR gene was knocked out in AD-MSCs 

using the pCas-Guide CRISPR vector carrying 

aryl hydrocarbon receptor gRNA (target 

sequence: CCTACGCCAGTCGCAAGCGG 

in exon 1 of the AhR gene, NCBI Reference 

Sequence: NM_001621), a donor vector 

containing the left and right homologous 

arms and GFP-Puro functional cassette, and 

a scramble sequence in the pCas-Guide 

vector (Origene, USA). The protocol is 

based on the manufacturer’s 

recommendation. AD-MSCs were 

transfected with the gRNA and scramble 

control vectors using TurboFectin (Origene, 

USA). After 48 hours of transfection, the 

cells were divided at a ratio of 1:10 and 

cultured for 3 days. The process was 

repeated for a total of seven splits based on 

the manufacturer’s protocol. At 20 days 

posttransfection, the AhR-KO cells were 

selected with 5 µg/mL puromycin. 

Subsequently, individual cell colonies were 

isolated by diluting and seeding 

approximately 1-2 cells per well in a 96-well 

plate. After 14 days, cell colonies were 

formed and observed under a microscope. 

Only the wells containing one cell colony 

were selected. The cell clones were then 

expanded in 6-well plates. 

Analysis of AhR-KO cells 

The transfected cells were confirmed by the 

detection of green fluorescence protein 

(GFP) using the ImageXpress® Pico 

Automated Cell Imaging System (Molecular 

Devices, USA) via automated digital 

microscopy. Following puromycin selection, 

genomic DNA was extracted from cells 23 

days post-transfection. Specific primers 

were designed for PCR to verify GFP-

puromycin integration in the genome. The 

forward primer was located on the AhR gene, 

and the reverse primer was located on the 

GFP gene (Table 1). The presence of 

products of the expected size (approximately 

1 kb) was confirmed using 1% agarose gel 

electrophoresis. The PCR products were 

then subjected to Sanger sequencing to 

confirm integration (1st BASE, Singapore).

Table 1. Sequences of primers used in this study. 

Primers Sequence (5’-3’) Purpose 

AhRg-F 

GFPg-R 

CCCAGGCCAGGATTCTAAATA 

CGGATGATCTTGTCGGTGAA 

Detection of transfected cells 

AhR-F 

AhR-R 

ACATCACCTACGCCAGTCGC 

TCTATGCCGCTTGGAAGGAT 

Analysis of gene expression levels 

Cyp1B1-F 

Cyp1B1-R 

CACTGCCAACACCTCTGTCTT 

CAAGGAGCTCCATGGACTCT 

Analysis of gene expression levels 

β-actin-F 

β-actin-R 
TCATGAAGTGTGACGTGGACATC 
CAGGAGGAGCAATGATCTTGATCT 

Analysis of gene expression levels 

Quantitative real-time PCR (RT‒qPCR) was 

conducted to confirm the knockout of AhR 

by measuring the gene expression of AhR 

and the downstream gene Cyp1B1. Total 

RNA was isolated from cell lines using 

TRIzol Reagent (Thermo Fisher Scientific, 
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USA) according to the manufacturer’s 

instructions. cDNA was synthesized from 

1.0 μg of total RNA using a RevertAid First 

Strand cDNA Synthesis kit (Thermo Fisher 

Scientific, USA). RT‒qPCR analysis was 

performed using primers (Table 1) and 

PowerUp SYBR Green Master Mix (Thermo 

Fisher Scientific, USA) in a QuantStudio™ 

6 Pro Real-Time PCR System. The relative 

expression levels of the genes were 

calculated based on the 2-∆∆Ct method (Livak 

& Schmittgen, 2001) after normalization of 

the mRNA levels of the target genes to those 

of the endogenous housekeeping gene β-

actin. The graphs and data were analyzed 

using Microsoft Excel, and the p values were 

calculated using the t test. 

Statistical analysis 

The data are presented as the mean ± 

standard deviation of triplicate samples. P < 

0.05 was considered as statistically 

significant. 

RESULTS AND DISCUSSION 

The integration of the GFP-Puro cassette 

in AhR-KO cell clones 

The CRISPR/Cas9 technology has been 

extensively employed in stem cell research 

to induce gene knockout (Zhang et al., 

2017). In this work, we employed 

CRISPR/Cas9 technology to disable the AhR 

gene (AhR-KO) in a cell line called AD-

MSC (PT-5006). A schematic of the AhR-

KO process is shown in Figure 1A. pCas-

guide vectors have been successfully used in 

previous studies to knock out genes in 

human stem cells (Kim et al., 2020; Lee et 

al., 2022, Disse et al., 2023). The target 

sequences used in previous studies were 

employed to generate AhR-KO cells 

(Rothhammer et al., 2018). By transfecting 

the pCas-Guide vector, which contains an 

AhR target sequence, along with a donor 

vector carrying a GFP-Puro cassette 

encoding a green fluorescent protein and 

puromycin resistance, AD-MSC clones with 

AhR-KO cells were obtained through optical 

and puromycin selection. The presence of 

the PGK promoter in the puromycin 

resistance gene of the donor vector enables 

the plasmid donor DNA to be resistant to 

puromycin before it is integrated into the 

genome. The goal of cultivating cells for a 

period of 20 days before puromycin 

selection is to reduce the number of cells 

containing the donor in its episomal form by 

dilution. Cells expressing the GFP-Puro 

cassette were visualized using fluorescence 

microscopy, as depicted in Figure 1B. 

Genomic PCR results, shown in Figure 1C, 

confirmed the integration of the functional 

cassette into the genome in three cell clones. 

Agarose gel analysis revealed successful 

integration of the GFP-Puro cassette into the 

AhR gene, facilitated by the gRNA used, 

resulting in a PCR product size of 

approximately 1 kb. 

To investigate the type of integration, the 

PCR products from cell clone 1 were 

subjected to Sanger sequencing. As shown in 

Figure 2, cell clone 1, transduced with the 

pCas-guide vector and donor vector, 

exhibited homozygous integration of the 

AhR gene. 
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Figure 1. Diagram of the use of CRISPR/Cas9 to knock out the AhR gene in the AD-MSC (PT-5006) 
cell line. A. pCas-guide, a dual-function vector containing both guide RNA and Cas9, and a donor 
vector carrying the functional cassette (GFP-Loxp-Puro-Loxp) were cotransfected into AD-MSCs.  
B. GFP expression was analyzed in transfected cells using automated digital microscopy.  
C. PCR detection of the integrated GFP-Puro cassette in transfected cell lines. Clones 1, 2, and 3 
contained an amplified integrated fragment (approximately 1 kb). CT: cells were transfected with a 
scramble control or the donor vector. 

 

Figure 2. Sanger sequencing confirmation of the integration of the GFP-Puro cassette in the AhR-
KO cell clone. 
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Expression levels of genes in AhR-KO cell 

clones 

AhR is a transcription factor that is activated 

by ligands and is responsible for controlling 

the transcription of several target genes, such 

as Cyp1B1 (Jacob et al., 2011). The 

AhR/ARNT heterodimer, consisting of AhR 

and aryl hydrocarbon nuclear translocator 

(ARNT), forms an active transcriptional 

complex. This complex binds to xenobiotic 

responsive elements (XREs) located in the 

Cyp1B1 promoter. As a result, the 

transcription of Cyp1B1 is stimulated 

(Mohamed et al., 2018). Downregulation of 

AhR expression led to a decrease in Cyp1B1 

expression (Do et al., 2014). 

In order to determine the impact of AhR 

deletion in AD-MSCs on the expression of 

AhR and Cyp1B1 at the mRNA level, RT-

qPCR analysis was used to investigate the 

gene expression of the two genes in cell 

clone 1. AhR and its downstream gene 

Cyp1B1 were expressed in the wild-type 

AD-MSC (PT-5006) cell line. However, 

when AhR was knocked out using 

CRISPR/Cas9, there was a significant 

decrease in the expression of both genes in 

the cells, with fold changes of 7.69 for AhR 

and 3.70 for Cyp1B1. The scramble control-

transfected cells did not exhibit any 

significant difference in AhR or Cyp1B1 

expression compared to the wild-type cells 

(Figure 3). These findings were similar to 

previous study that found a decrease in the 

expression of AhR and its downstream genes 

in KO cells utilizing CRISPR/Cas9 

technology (Zgarbová & Vrzal, 2022). 

 

Figure 3. AhR (A) and Cyp1B1 (B) expression in transfected cell clone 1. The data obtained were 
normalized to the levels of the housekeeping gene β-actin. Error bars represent the mean ± SD of 
three biological replicates from one representative experiment. *p < 0.05; **p < 0.01. 

Disrupting specific genes in stem cells 

through knockout techniques is a highly 

effective method for investigating their roles 

in differentiation, proliferation, and other 

essential cellular functions (Mandl et al., 

2020). Several genome editing methods 

have been developed to generate KO stem 

cells, with CRISPR/Cas9 is one of the most 

powerful systems (Kim et al., 2020; Lee et 

al., 2022). Mammalian somatic cells have 

traditionally been shown to be resistant to 

genetic modification (Komor et al., 2017). 

The efficacy of CRISPR/Cas9 knockout 

varies depending on the complexity of the 

experimental procedure and the natural 

features of the stem cells. In this research, we 

utilized commercially available pCas-Guide 

vectors carrying AhR gRNA and donor 

vectors containing left and right homologous 

arms and a GFP-Puro functional cassette. 

These vectors and gRNA sequences were 

extensively used in previous studies to 
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generate KO stem cells and AhR-KO cells 

(Kim et al., 2020; Lee et al., 2022; Disse et 

al., 2023; Rothhammer et al., 2018). After 

cotransfection into commercialized AD-

MSCs (PT-5006), genome editing was 

achieved via homology-directed repair. 

Using CRISPR/Cas9 technology, our results 

demonstrated that the AhR gene was 

successfully knocked out in AD-MSCs. 

However, transfections with more than one 

gRNA and optimization of the puromycin 

selection concentration will also be 

necessary to improve the efficacy of 

CRISPR/Cas9 in AhR-KO cells. 

CONCLUSION 

This study utilized the CRISPR/Cas9 system 

to knock out the AhR gene in AD-MSCs 

(PT-5006). By employing the pCas-guide 

vector in conjunction with a donor vector 

carrying a functional cassette, followed by 

GFP and puromycin selection, AhR-KO cell 

clones were successfully generated. Further 

investigations are needed to explore the 

effects of AhR knockout on the functions of 

AD-MSCs using these AhR-KO cells. 
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