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ABSTRACT 

Biological research with nematode models is increasing to understand the phenomenon of 
molecular genomes, genetics, and biological comparison. Different methods have been 
developed to produce genetically modified organisms that have the desired characteristics. 
Found in 1985, the gonadal microinjection in Caenorhabditis elegans has been obtained 
greatly effective for transformations. To other nematodes, this transformation methodology 
could play an important role in studying genetics and genomics within and among the species. 
Research methods with several other non-C. elegans round nematodes were adopted the 
microinjections to do transformation. In this research of transformation, we report the results 
of transgenics for different plasmids in eight dioecious species (C. portoensis, 
Caenorhabditis sp. 33, C. brenneri, C. nigoni, C. sinica, C. imperialis, C. nouraguensis, and 
C. remanei). We gained the stable transgenes of the first four species and failed the last four. 

Keywords: androdioecious, Caenorhabditis, fluorescent protein, microinjection, myo-2, 
sur-5, transformation. 

 
INTRODUCTION 

New species of Caenorhabditis nematodes 
are being discovered every year (Kiontke et 
al., 2011; Felix et al., 2014; Dieter Slot, 
2017; Kanzaki et al., 2018). A detailed study 
of their biology can be fruitful, especially for 
comparative questions in evolutionary 
biology with the Caenorhabditis nematodes. 
In this respect, C. briggsae has been the 
main model (Gupta et al., 2007), partly 
because it is also a hermaphroditic species 
and was the second nematode to be 
sequenced (Stein et al., 2003). Inclusion of 

other species has increased over time, and 
their study has covered topics such as 
evolutionary developmental biology 
(Kiontke et al., 2007; Braendle, Felix, 2008; 
Huang et al., 2014), sperm competition and 
sperm size evolution (LaMunyon, Ward, 
1999; Vielle et al., 2016), speciation and 
hybrid incompatibility (Woodruff et al., 
2010; Ross et al., 2011; Ting et al., 2014; Bi 
et al., 2015), and genome evolution (Le et al., 
2017; Yin et al., 2018). 
Many of the comparative studies would 
benefit from suitable tools to conduct 
genetic manipulations. As satellite species to 
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the well-known model C. elegans, other 
Caenorhabditis species can adapt many pre-
existing tools to engineer the genome, for 
example, transgenesis (Rieckher et al., 
2009), CRISPR/Cas9 (Clustered regularly 
interspaced short palindromic 
repeats/CRISPR-associated protein 9) (Lo et 
al., 2013), TALENS (transcription activator-
like effector nucleases) (Lo et al., 2013; Wei 
et al., 2014a; Wei et al., 2014b), ZFNs (zinc-
finger nucleases) (Wood et al., 2011), 
MosTIC (Mos1 excision-induced transgene-
instructed gene conversion) (Robert, 
Bessereau, 2007), and MosSci (Mos1-
mediated Single Copy Insertion) (Frokjaer-
Jensen et al., 2008). 
Transgenesis in C. elegans is typically 
achieved through gonadal microinjection 
(Stinchcomb et al., 1985; Evans, 2006) or 
microparticle bombardment (Praitis et al., 
2001). Although both techniques are used in 
nematode species (Hashmi et al., 1995; 
Higazi et al., 2002; Grant et al., 2006; Li et 
al., 2006; Semple et al., 2010; 
Cinkornpumin, Hong, 2011; Shao et al., 
2012), microinjection is more regularly used 
because microparticle bombardment needs a 
good selectable marker, requires large 
numbers of nematodes (Praitis et al., 2001), 
and thus is more costly (Praitis, 2006). 
In microinjection of the Caenorhabditis 
nematodes species, one or several plasmids 
(or DNA molecules) are co-injected into the 
syncytial gonads of hermaphrodites in 
androdioecious species (C. elegans, C. 
briggsae, and C. tropicalis) or females in 
dioecious species (C. brenneri, C. angaria, 
and Caenorhabditis sp. 2) (Fire, 1986; Fire 
et al., 1990; Fire et al., 1991; Kennedy et al., 
1993; Fire et al., 1998; Evans, 2006; Nuez, 
Felix, 2012). The plasmids in the cell 
assemble into presumably linear 
extrachromosomal arrays. The formation of 

arrays seems to be enhanced by overlapping 
homologous sequences although such 
homology is not necessary (Stinchcomb et 
al., 1985; Fire, 1986; Mello et al., 1991). 
The gonadal microinjection is often aided by 
the co-injection of a gene rescue or 
dominant-phenotype markers such as unc-
119 (Maduro, Pilgrim, 1995), rol-6 (su1006) 
(Kramer et al., 1990; Mello et al., 1991), 
unc-22 (Fire et al., 1991), green fluorescent 
proteins (GFP), red fluorescent protein 
(RFP), or yellow fluorescent protein (YFP) 
(Chalfie et al., 1994; Gu et al., 1998; Miller 
et al., 1999; Hutter, 2003; Wenick, Hobert, 
2004). 

The transformation rate varies in F1 
generations from low to high, often less than 
2% of progeny (Fire, 1986), although rarely 
as high as 90% (Kadandale et al., 2009). 
This was found to simultaneously depend on 
multiple factors, including the sequences, 
concentration, and size of the injected 
constructs as well as the practical skill (Fire, 
1986; Fire et al., 1990; Mello et al., 1991). 
The gonadal microinjection method is likely 
a hallmark of research because it allows any 
exogenous DNA constructs to be introduced 
into the organisms. However, the method is 
technically and biologically challenging and 
requires excessive effort. This research 
reports the transgenesis to generate the 
transgenes for studying transformation 
ability, the evolution of genome sizes (Le et 
al., 2017), and the pharynx in eight 
dioecious Caenorhabditis nematodes. 

MATERIALS AND METHODS 

Nematode strains: C. brenneri (CB5161), C. 
nigoni (BRC10093), C. imperialis (EG5716), 
C. nouraguenis (JU2079), C. portoensis 
(EG4788), C. sp. 33 (BRC10016), C. 
remanei (PB4641), and C. remanei 
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(BRC310). Each species was genetically 
identified by ourselves or kindly provided by 
collaborators (Le et al., 2017). The worms 
were regularly cultured repeatedly on 
nematode growth media seeded with 
Escherichia coli OP50 strains. 
Plasmids: pDD04Neo [C. elegans myo-
2::GFP]; pPD158.87 [C. elegans sur-
5::GFP]; pCFj104 [Pmyo-3::mCherry::unc-
54], and pPD135.83 [pLET::GFP]. 
General microinjection: Transformation 
by gonadal microinjection was adapted from 
androdioecious Caenorhabditis nematodes 
(Evans, 2006; Kanzaki et al., 2018) for 
dioecious species. Briefly, female worms at 
the young adult stage were mounted on the 
microscopic pad. They were injected 
bilaterally with one or two drops of the 
injection mixture into the gonads. In detail, 
20 ng/µL pDD04Neo with and without 100 
ng/µL pPD158.87 was injected in C. 
portoensis; 5, 10, and 20 ng/µL of 
pDD04Neo in Caenorhabditis sp. 33; 20 
ng/µL pDD04Neo with 100 ng/µL 
pPD158.87 in C. brenneri; 20 ng/µL 
pDD04Neo with and without 100 ng/µL 
pPD158.87; and 150 ng/µL of hsp16/4 and 
hsp16/2 in C. nigoni. 
After, the injected worms were recovered 
with a sugar solution on E. coli OP50-seeded 
plates before three to five L4-stage or young 
males were added. We looked for the 
transgenic F1 offspring expressing the 
fluorescence marker, i.e. GFP, under 
microscopes in the next days until the 
injected worm stopped laying eggs. Each 
transgenic F1 individual was picked onto a 
single new E. coli OP50-seeded plate, on 
which three to five L4 of the other sex were 
added to reproduce the F2 progeny. Beyond 
F2s, each transgene was transferred in 

chunks to a new E. coli OP50-seeded plate 
every two weeks. 

RESULTS 

We tested the transgenic ability for eight 
dioecious species, which were C. portoensis, 
C. sp. 33, C. brenneri, C. nigoni, C. sinica, 
C. imperialis, C. nouraguensis, and C. 
remanei, with different transgenic plasmid 
components (Table 1). We conducted every 
injection trial until getting one transgene for 
each nematode species. 

Stable transgenes with fluorescent 
expression 

Caenorhabditis portoensis: 50 P0 females 
were injected with two mixtures of 
constructs (either 20 ng/µL pDD04Neo with 
or without 100 ng/µL pPD158.87). Two 
transgenic F1s were produced from each 
dose. The unique F1 individual transferred 
with pDD04Neo produced many transgenic 
generations that had GFP expression, 
suggesting this is a stable transgene 
(Table 1). 

Caenorhabditis sp. 33: 104 P0 females were 
injected with 5, 10, and 20 ng/µL of 
pDD04Neo. All three injected groups 
produced 318 transgenic F1s. One F1 
transgenic individual induced by the highest 
construct concentration produced the next 
transgenic generations, indicating that it is a 
stable transgene (Fig. 1a and Table 1). 

Caenorhabditis brenneri: 110 P0 females 
were injected with 20 ng/µL pDD04Neo and 
100 ng/µL pPD158.87. Nighty-four F1s 
inherited the constructs and produced 24 
stable lines (Table 1). 
Caenorhabditis nigoni: 193 P0 females 
were injected with three mixtures of 
constructs (20 ng/µL pDD04Neo with and 
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without 100 ng/µL pPD158.87, and 150 
ng/µL of hsp16/4 and hsp16/2). The two first 
injected groups produced 25 transgenic F1s. 
Among the F1s, 24 of the first group were 
reproductive for transgenes in many 
generations, suggesting they were stable 
transgenic lines (Table 1). 

In our research, we successfully conducted 
stable transgenes for four dioecious species 
(C. portoensis, C. sp. 33, C. brenneri, and C. 
nigoni). They expressed GFP in the pharynx, 
suggesting that myo-2::GFP in pDD04Neo 
was expressed. Previously, the same 
transformation was reported for the five 
dieocious species (C. brenneri, C. angaria, 
C. sinica, C. nigoni, C. remanei, C. sp. 2, and 
C. inopinata (Nuez, Felix, 2012), and C. 
inopinata (Kanzaki et al., 2018)). In our 
knowledge, we proved the first 
transformation for C. portoensis and 
Caenorhabditis sp. 33, indicating that they 
are accessible to exogenous vectors by the 
gonadal microinjection (Table 1). We 
assumed that the pDD04Neo is sensitive to 
the pharyngeal expression in different 
Caenorhabditis species. 

Non-stable transgenes without 
fluorescent expression 
Caenorhabditis sinica: 115 P0 females were 
injected with the same construct mixtures to 
C. nigoni. Four F1s were transformed for the 
injected vectors but none of them were 
producible for the next transgenic 
generations (Table 1). 
Caenorhabditis imperialis: 28 P0 females 
were injected with 20 ng/µL pDD04Neo and 
100 ng/µL pPD158.87 for 28 P0 females. 
None of the F1s and F2s express the 
transformation (Table 1).  

Caenorhabditis nouraguensis: Fourteen P0 
females were injected with 20 ng/µL 
pDD04Neo plus 100 ng/µL pPD158.87 for 
14 P0 females. A single F1 was transgenic 
but did not continue the transgenes in any 
progeny generations (Table 1). 

Caenorhabditis remanei: 378 P0 females of 
two strains were injected with nine mixtures 
of constructs (pDD04Neo with and without 
pCFj104) that had little changes in vector 
concentrations. 135 F1 offspring were 
transgenic but none of them were 
reproductive for the transgenic F2s (Table 1). 

 

Figure 1. Larvae of C. sp. 33 (myo-2::GFP) expressing GFP in the pharynx of the F2 offspring 
generation (white arrow). 
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Table 1. Transgenesis in dioecious Caenorhabditis nematodes. 
Species 
(strain) Injection Plasmid Trial P0 F1 F2 Expression 

C. portoensis 
(EG4788) 

1st 20 ng/µL pDD04Neo + 100 
ng/µL pPD158.87 1 25 1 0 None 

2nd 20 ng/µL pDD04Neo 1 25 1 many Pharynx† 

C. sp. 33 
(BRC10016) 

1st 5 ng/µL pDD04Neo 1 40 5 0 None 
2nd 10 ng/µL pDD04Neo 1 28 13 0 None 
3rd 20 ng/µL pDD04Neo 1 36 300 1 Pharynx† 

C. brenneri 
(CB5161) 1st 20 ng/µL pDD04Neo + 100 

ng/µL pPD158.87 4 110 94 24 Pharynx, 
Intestine†  

C. nigoni 
(BRC10094) 

1st 150 ng/µL (hsp16/4 + 
hsp16/2) 1 25 0 0 None 

2nd 20 ng/µL pDD04Neo 2 87 1 0 None 

3rd 20 ng/µL pDD04Neo + 100 
ng/µL pPD158.87 4 81 24 many Pharynx, 

Intestine† 

C. sinica 
(BRC10093) 

1st 150 ng/µL (hsp16/4 + 
hsp16/2) 1 25 0 0 None 

2nd 20 ng/µL pDD04Neo 1 50 1 0 None 

3rd 20 ng/µL pDD04Neo + 100 
ng/µL pPD158.87 1 40 3 0 None 

C. imperialis 
(EG5716) 

1st 20 ng/µL pDD04Neo + 100 
ng/µL pPD158.87 1 28 0 0 None 

C. nouraguensis 
(JU2079) 

1st 20 ng/µL pDD04Neo + 100 
ng/µL pPD158.87 1 14 1 0 None 

C. remanei 
(PB4641) 

1st 200 ng/µL pDD04Neo 1 30 6 0 None 
2st 10 ng/µL pDD04Neo 1 65 36 0 None 
3rd 7.5 ng/µL pDD04Neo 1 25 0 0 None 

4th 100 ng/µL pDD04Neo + 
100 ng/µL pCFj104 1 20 2 0 None 

5th 2.5 ng/µL pDD04Neo + 
125 ng/µL pCFj104 1 44 1 0 None 

C. remanei 
(BRC310) 

1st 20 ng/µL pDD04Neo 1 42 42 0 None 
2nd 10 ng/µL pDD04Neo 1 35 8 0 None 
3rd 5 ng/µL pDD04Neo 1 55 5 0 None 

4th 20 ng/µL pDD04Neo + 50 
ng/µL pPD135 2 62 35 0 None 

†The expression was already published (Le et al., 2017).

In our research, we failed to make transgenic 
lines that were stable for four species. C. 
imperialis did not produce any transgenic F1. 
In contrast, three other species (C. sinica, C. 
nouraguensis, and C. remanei) produced 
many transgenic F1s and no transgene in the 
next generations, suggesting that the myo-
2::GFP constructs were expressed in the 
Caenorhabditis nematodes but the 
extrachromosomal arrays might not be 
inherited in germlines (Mello et al., 1991; 

Rieckher et al., 2009). However, for a better 
chance of getting a stable transgene, the 
number of P0 injections should be increased, 
resulting in numerous transgenic F1s by 
which a few stable transgenic F2 offspring 
are reproduced. For example, in this research, 
C. brenneri and C. nigoni, each after four 
subsequent trials, were effective. Other time-
consuming methods would be initiated with 
new construct designs with the precise 
understanding of genome sequences. 
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CONCLUSION 

Eight species (C. portoensis, Caenorhabditis 
sp. 33, C. brenneri, C. nigoni, C. sinica, C. 
imperialis, C. nouraguensis, and C. 
remanei) were injected with different 
plasmid mixtures. The first four of them 
were successfully transformed and well 
expressed the myo-2::GFP in pDD04Neo 
and sur-5::GFP in pPD158.87 in the 
pharynx through multiple generations. 
Among these, C. portoensis and 
Caenorhabditis sp. 33 were the first 
successful for microinjection. The last four 
of the tested species were failed for 
transformation. 
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