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ABSTRACT 

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in significant respiratory 
morbidity and mortality. Smoking is a well-established risk factor for adverse respiratory 
outcomes, and it may exacerbate COVID-19 outcomes by altering the upper respiratory tract 
(URT) microbiome. However, the association between smoking, the URT microbiome, and 
COVID-19 severity remains controversial. In this study, we investigated the microbial 
community in the UTR of smoking and non-smoking COVID-19 patients using 16S 
ribosomal RNA metagenomic datasets. By characterizing the microbial profiles of the URT 
of 88 COVID-19 patients with and without a smoking history, we examined the differences 
in the URT microbiome between smokers and non-smokers and identified bacteria that could 
serve as smoking signatures. Our study found that Prevotella was the most abundant genus 
in the URT microbiome of both smoking and non-smoking COVID-19 patients, followed by 
five other dominant genera. Notably, Fusobacterium was significantly higher in smokers 
than non-smokers, suggesting that smoking may affect the URT microbial composition. 
However, the alpha and beta diversity indices showed no significant differences within and 
across communities, regardless of smoking status or levels of severity. Differential 
abundance analysis suggested that the impact of smoking on the URT microbiome may lead 
to an increase in the abundance of Streptobacillus in smoking patients. Overall, this study 
highlights the potential impact of smoking on the URT microbiome and its relevance to 
COVID-19 outcomes. Thus, it provides insights into the underlying mechanisms that may 
lead to worsened COVID-19 outcomes due to smoking-induced alterations in the URT 
microbiome.  
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INTRODUCTION 

The COVID-19 pandemic has killed 
millions of people worldwide. SARS-CoV-
2, the virus that causes COVID-19, primarily 
targets the respiratory system and lungs, 
posing a significant challenge to individuals 
with pre-existing lung conditions such as 
asthma and chronic obstructive pulmonary 
disease (COPD). COVID-19 severity was 
also correlated with the extent of lung 
damage (Shi et al., 2020), which can 
provoke pneumonia, acute respiratory 
distress syndrome (ARDS), or long-term 
lung function issues. To assess the severity 
of COVID-19, the extent of lung damage 
must be understood. 
Furthermore, given that the upper 
respiratory tract (URT) is the primary entry 
point for SARS-CoV-2, the interaction 
between the virus and the URT microbiome 
is significant. The term “microbiome” is 
defined as a collection of microorganisms 
inhabiting a defined environment, including 
bacteria, fungi, protozoa, viruses, and other 
micro-eukaryotic colonizers (Berg et al., 
2020). Without any infection or chronic 
disease, a typical URT microbiome 
primarily consists of Actinobacteria (68%) 
and Firmicutes (27%), with 
Propionibacterium, Corynebacterium, and 
Staphylococcus as representative genera. 
The remaining bacterial phyla, such as 
Proteobacteria (4.0%), Bacteroidetes (1.4%), 
Fusobacteria (0.21%), Cyanobacteria 
(0.08%), and others, account for a much 
smaller proportion (Zhu et al., 2020). 
However, COVID-19 can alter URT 
microbial composition and homeostasis, 
causing diversity shifts and pathological 
consequences (Bello et al., 2018). SARS-
CoV-2 infection disrupts the URT 
microbiome (Dickson & Huffnagle, 2015), 

increasing opportunistic pathogens like 
Streptococcus and Rothia and decreasing 
levels of commensal bacteria, such as 
Prevotella and Veillonella (Han et al., 2020). 
Likewise, COVID-19 severity was linked 
with an alteration in the URT microbiome, 
which reduced the abundance of 
Corynebacterium relatives (Rosas-Salazar et 
al., 2021). Thus, understanding the 
disturbances in the URT microbiome during 
COVID-19 infection offers a promising way 
to investigate the repercussions of the 
disease. 

Smoking can harm lung function, making it 
a risk factor for respiratory infections like 
COVID-19. Smokers had nearly two times 
the risk of COVID-19 severity compared to 
non-smokers (Zhao et al., 2020). Reddy et al. 
(2021) further demonstrated that smokers 
were more likely to develop severe or critical 
COVID-19 conditions that required 
intensive care unit (ICU) admission and 
mechanical ventilation. Smoking can disrupt 
the balance of the URT microbial 
composition and increase the risk of 
respiratory infections and other respiratory 
conditions. A study compared the nasal 
cavity microbiome of smokers and non-
smokers and found a significant decrease in 
bacterial diversity and an increase in 
pathogenic bacteria (Al Kawas et al., 2021). 
Several recent studies have focused on the 
exclusive association between smoking and 
COVID-19 outcomes, or the URT 
microbiome, but how smoking-induced 
microbiome changes affect the severity of 
COVID-19 has not been explored.  

This study examined the microbial profiles 
of the URT in COVID-19 patients to 
understand the difference between smoking 
and non-smoking groups. Our study sought 
to answer two main questions about the URT 
microbiome and COVID-19 severity in 
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smokers and non-smokers: (1) Do smokers 
and non-smokers have different URT 
microbial diversity? (2) Does the URT 
contain smoking-signature microorganisms? 
To address these questions, we analyzed the 
16S metagenomics to look at COVID-19 
patients’ URT bacterial profiles and 
examined any microbial shifts associated 
with smoking status and disease severity.  

MATERIALS AND METHODS 

Study population 

From the BioProject PRJNA751478, we 
selected a cohort of 88 patients with a 
confirmed COVID-19 diagnosis out of the 
original dataset of 335 patients (Galeeva et 
al., 2022). Participants who lacked 
information on smoking and the percentage 
of lung damage were excluded. The selected 
cohort comprised 78 non-smokers (88.6%) 
and ten smokers (11.4%). The mean age of 
this study population was 61.1 (±15.6) years. 
There was a fairly even gender distribution 
of females (n = 48) and males (n = 40). The 
percentages of lung damage were then 
categorized into three levels based on 
quartile statistics: mild (below 15% of lung 
damage, inclusively, n = 29), moderate 
(between above 15% and under 40%, n = 32), 
and severe (above 40%, inclusively, n = 27). 

Raw data description and processing 

Raw 16S rRNA sequencing data generated 
from the nasopharyngeal samples of these 
COVID-19 patients was retrieved from the 
open-source repository NCBI/Sequence 

Read Archive under the mentioned 
BioProject (Galeeva et al., 2022). These 
sequences were generated by the Illumina 
MiSeq platform (Illumina, San Diego, CA, 
USA) to amplify the V3-V4 region of the 
16S rRNA gene amplicon sequences. The 
data possesses an average of 4,635 reads per 
sample. The metadata, providing the 
personal and clinical information of the 
patients, such as age, sex, smoking status, 
the percentage of lung damage (classified 
into the three levels mentioned), and patient 
status (hospitalized or on ambulatory 
treatment), were also included. We then 
investigated the URT microbiome in the 
selected cohort using Quantitative Insights 
Into Microbial Ecology 2 (QIIME2) 
software version (Bolyen et al., 2019), 
following the below 16S metagenomics 
pipeline (Figure 1). 
We checked the quality of the paired-end, 
demultiplexed data of 16S rRNA gene 
sequences in the form of FASTQ files before 
being imported into QIIME2. The imported 
data underwent sequence filtering through 
the Divisive Amplicon Denoising Algorithm 
2 (DADA2) package in QIIME2 (Callahan 
et al., 2016), which enables high-resolution 
sequence selection and denoises low-quality 
sequencing reads. The reads were then 
merged with VSEARCH (Rognes et al., 
2016) and denoised via the UCHIME de 
novo approach to detect and remove 
chimeric sequences (Edgar et al., 2011). The 
resulting sequences were clustered into 
operational taxonomic units (OTUs) with an 
assumed 97% similarity.  
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Figure 1. Overview of the metagenomics pipeline used in this study on QIIME2 for 16S rRNA gene 
sequencing analysis. 

Microbiome analysis 

Alpha diversity 

Alpha diversity evaluates species diversity 
within a single community (intra-
community diversity) through measures of 
richness and evenness (Thukral, 2017). We 
measured richness via the Shannon index 
and observed features, and evenness via the 
Pielou index, and Faith’s phylogenetic 
diversity (PD). Alpha rarefaction curves 
constructed via observed features were 
obtained for each sample to estimate the 
OTUs detected as a function of sequencing 
depth. Alpha diversity indices were 
calculated after rarefying the abundance 
table to 900 reads per sample. 

Beta diversity 

Beta diversity (inter-community diversity) 
measures the variation in species diversity 
between communities (Anderson et al., 
2006). We estimated dissimilarity between 
groups by incorporating phylogenetic 
distances between ASVs based on Jaccard, 
Bray-Curtis, Unweighted UniFrac 
(qualitative measure), and Weighted 
UniFrac (quantitative measure) distances. 
Bray-Curtis distance measures the 
dissimilarity based on the abundance of 
shared microbial taxa. Jaccard distance 
measures dissimilarity based on the presence 
or absence of microbial taxa. Weighted 
UniFrac considers both the abundance and 
phylogenetic relatedness of microbial taxa, 
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whereas unweighted UniFrac only considers 
the presence or absence of microbial taxa. 
We computed the four distance indices, in 
which the distances between the OTUs were 
handled by reducing the original distances to 
principal coordinate analysis (PCoA). 

Taxonomic classification  

Taxonomy was assigned to the ASVs using 
a pre-trained classifier of the SILVA 
database version 138.1 (Quast et al., 2013; 
Yilmaz et al., 2014). The resulting feature 
table allowed the quantification and 
comparison of the microbial community 
composition. Representative sequences were 
obtained for each OTU, enabling the 
construction of a phylogenetic tree to 
determine the evolutionary relationships 
between different microbial taxa and 
identify specific sequences defining each 
OTU. The relative taxonomic abundance of 
the groups is presented as a mean percent 
value, calculated by dividing the read counts 
of a taxon by the sample size. 

Differential abundance  

Differential abundance (DA) analysis using 
sophisticated statistics for multivariate 
analysis can identify taxa that differ 
significantly between conditions (Lin & 
Peddada, 2020). In this study, DA analysis 
was conducted using the Analysis of 
Composition of Microbiomes (ANCOM) 
method (Mandal et al., 2015), which takes 
into account the compositional nature of 
microbiome data through Centered Log 
Ratio (CLR) transformation. The CLR 
transformation involves taking the logarithm 
of the ratio of each taxon’s abundance to the 
geometric mean of taxon abundances in the 
sample. This study used ANCOM with CLR 
transformation to identify significantly 

distinct microbial taxa. The W statistic, an 
output of ANCOM, indicated the differential 
abundance of microbial taxa between groups, 
with a higher value indicating a higher 
likelihood of differential abundance.  

Statistical analysis and visualization 

The statistical analysis and visualization 
were conducted using R version 4.2.3 
software (R: The R Project for Statistical 
Computing, n.d.), mainly with the QIIME2R 
(Bisanz, 2023), vegan (Oksanen et al., 2022), 
tidyverse (Wickham et al., 2019), and 
ggplot2 (Ggplot2: Elegant Graphics for 
Data Analysis | SpringerLink, n.d.) packages. 
In addition, the QIIME2 view function was 
used to visualize alpha-rarefaction and beta-
diversity results. Multivariate statistical 
analysis was conducted by incorporating the 
OTU table, phylogenetic tree, taxonomic 
information, and metadata. To compare the 
relative abundance of the URT microbiome 
between smokers and non-smokers, an 
independent t-test was performed after 
confirming the normality assumptions. The 
statistical significance of alpha diversity 
between smoking and non-smoking groups 
was determined by the Wilcoxon signed 
rank test. Beta diversity was assessed by 
permutational multivariate analysis of 
variance (PERMANOVA) of 999 
permutations, which fits linear models to 
distance matrices and uses a permutation test 
with pseudo-F ratios. ANCOM, also one of 
the statistical tools for multivariate analysis, 
was used to find out the microbial signature 
of smoking. The W statistic was calculated 
to measure the magnitude of differences in 
the relative abundance of a feature between 
groups while controlling the false discovery 
rate. A p-value less than 0.05 was considered 
statistically significant. 
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RESULTS 

Alpha diversity 

To account for heterogeneity in sequencing 
power, all samples were analyzed by 
rarefaction and diversity measured at a 
common sampling depth of 1000 reads per 
sample (Figure 2). As sequencing depth 

increases, the rarefaction curve reaches a 
plateau. This indicates that the sequencing 
data obtained from the samples was reliable 
for further analysis, given a certain depth 
and degree of representativeness. Based on 
the rarefaction curve analysis, we selected a 
sequencing depth cut-off of 900 reads for all 
samples for diversity analysis. 

 
Figure 2. Alpha rarefaction curves constructed based on observed features comparing smoking and 
non-smoking groups. Alpha rarefaction curves were visualized via QIIME2 view. The x-axis 
represents the number of sequencing depths, with the cutoff at 900 reads. 

Analysis of four alpha diversity indices 
revealed no significant differences between 
the smoking and non-smoking groups in 
terms of richness and evenness. Figure 3 
indicates that regardless of smoking status, 
both groups have a similar level of microbial 
diversity. In more detail, the richness index 
revealed that both groups have a comparable 
number of distinct species, as indicated by 
Shannon’s index (p-value = 0.7) and the 
Observed features index (p-value = 0.99) 

(Figures 3a and 3b). The evenness index 
indicated that they exhibit a similar 
complexity, as measured by Pielou’s 
evenness (p-value = 0.26) (Figure 3c). 
Additionally, Faith’s PD index, which 
assesses the complexity of the phylogenetic 
relationships of species in the samples, 
showed no significant differences in 
microbial diversity between the smoking and 
non-smoking groups (p-value = 0.47) 
(Figure 3d). 
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Figure 3. Comparison of alpha diversity indices between smoking and non-smoking groups. Box plots 
for alpha diversity indices: (a) Shannon’s index, (b) Observed Features, (c) Pielou’s evenness, and 
(d) Faith’s PD index. P-values were calculated with the Wilcoxon signed rank test between the two 
groups and displayed on each bar plot. A p-value less than 0.05 is considered statistically significant. 

Beta diversity 

The analysis of beta diversity showed no 
significant differences between smoking and 
nonsmoking groups (p-value > 0.05) 
(Figure 4), nor between patients with mild, 
moderate, and severe lung damage (p-value 

> 0.05) (Figure 5). Overall, the four beta 
diversity indices suggested that the 
microbial composition and abundance 
patterns of the URT microbiome are 
relatively comparable across all the groups 
studied, regardless of smoking status or 
different levels of lung damage. 

(a) (b) 

(c) (d) 
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Figure 4. Comparison of beta diversity indices between smoking and non-smoking groups. PcoA 
plots for beta diversity indices: (a) Bray-Curtis distance, (b) Jaccard distance, (c) weighted UniFrac 
distance, and (d) unweighted UniFrac distance are displayed. P-values were calculated with a 
pairwise PERMANOVA between smoking and non-smoking, with 999 permutations. A p-value less 
than 0.05 is considered statistically significant. 

(a) (b) 

(c) (d) 
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Figure 5. Comparison of beta diversity indices among COVID-19 patients with three levels of lung 
damage. PcoA plots for beta diversity indices: (a) Bray-Curtis distance, (b) Jaccard distance, (c) 
weighted UniFrac distance, and (d) unweighted UniFrac distance are displayed. P-values were 
calculated with a pairwise PERMANOVA between patients with mild, moderate, and severe levels of 
lung damage, with 999 permutations. A p-value less than 0.05 is considered statistically significant. 

However, when visualized in 3-dimension, 
we observed a cluster of OTU specific for 
non-smokers with moderate and severe 

levels of lung damage via the unweighted 
UniFrac distance analysis, as illustrated in 
Figure 6. Our findings indicates that non-

(a) (b) 

(c) (d) 
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smoking COVID-19 patients may possess a 
distinct microbial community in the URT, 
which may potentially contribute to the 

development and progression of lung 
damage in this subgroup. 

 
Figure 6. A cluster of OTU specific for non-smokers with moderate and severe lung damage. A 3-
dimensional PCoA plot for Unweighted UniFrac distance was visualized via QIIME2 view: (a) for 
smoking status, and (b) for levels of lung damage. 

 
Figure 7. Taxonomic analysis of the URT microbiome at the genus level between smoking and non-
smoking groups. Taxonomy- stacked bar plot of the mean relative abundance of the top six most 
abundant genera for smokers (n = 10) and non-smokers (n = 78). Genera with a mean relative apart 
from the top six are collapsed into the category “Others”.

(a) (b) 
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Taxonomic classification 

The taxonomy-stacked bar plots showed the 
main taxa in the URT microbiome at the 
genus level between smoking and non-
smoking COVID-19 patients (Figure 7). 
Overall, the URT microbiomes in both 
smoking and non-smoking groups were 
dominated by six bacterial genera. In 
particular, Prevotella was the most abundant 
genus in both smoking and non-smoking 
groups, with a mean relative abundance of 
23.92% (± 1.81) and 17.54% (± 0.217), 

respectively. The other five genera included 
Streptococcus (smokers: 7.28% ± 0.674 
versus non-smokers: 10.12% ± 0.143), 
Veillonella (8.84% ± 0.578 versus 8.60% ± 
0.110), Leptotrichia (2.43% ± 0.372 versus 
3.07% ± 0.0740), Capnocytophaga (0.85% ± 
0.106 versus 2.40% ± 0.0650), and 
Fusobacterium (6.73% ± 0.830 versus 
1.87% ± 0.0512). Among the six genera, the 
relative abundance of Fuscobacterium in 
smokers was significantly higher than that in 
non-smokers (p-value = 0.0039), as shown 
in Figure 8.

 

Figure 8. Taxonomic differences among the top six abundant genera in the URT microbiome between 
smoking and non-smoking groups. Box plots for the mean relative abundance of the main bacterial 
genera compared between the two groups: (a) Capnocytophaga, (b) Fusobacterium, (c) Leptotrichia, 
(d) Prevotella, (e) Streptococcus, and (f) Veillonella. A p-value less than 0.05 is considered statistically 
significant. 

(a) (b) (c) 

(d) (e) (f) 
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Differential abundance 

Streptobacillus was identified as the most 
significantly differential OTU in the URT 
microbiome between smokers and non-
smokers (Figure 9). The ANCOM result 
showed that Streptobacillus was highly 

represented in the URT microbiome of the 
smokers (W = 214), though with a low 
relative frequency (20% of smokers). In 
addition to this, our study was the first to 
identify the presence of Streptobacillus in 
COVID-19 patients. 

 
Figure 9. Differentially abundant bacterial taxa were identified by ANCOM. A volcano plot displays 
differential abundance at the genus level between smoking and non-smoking groups. The x-axis 
shows the CLR transformation, while the y-axis shows the W statistic. Positive x-axis values indicate 
the higher abundance in the smoking group, while negative values indicate the higher abundance in 
the non-smoking group. The higher the W statistic values, the more likely a feature differs statistically. 
A statistically significant feature, as identified by ANCOM, has been labelled in the plot. 

DISCUSSION 

The URT microbiome plays a crucial role in 
respiratory disease by shaping immune 
responses and potentially acting as the 
frontline of defense against viral attacks. To 
investigate the impact of smoking and the 
URT microbiome on the severity of COVID-
19, we analyzed the microbiome of 88 
patients using 16S metagenomics. Our 
findings shed light on the potential link 
between smoking-related URT microbiome 
changes and COVID-19 severity. 

To examine the impact of smoking on 
microbial diversity in the URT, we evaluated 
alpha diversity indices. Prior studies have 
yielded contradictory results regarding alpha 
diversity in smokers and non-smokers (Yu et 
al., 2017; Bach et al., 2023). Our study 
found no significant differences in microbial 
diversity between the two groups (Figure 3), 
similar to a study by Morris et al. in 2013. 
Due to small sample sizes and unequal 
proportions of smokers and nonsmokers, it is 
possible that our and other studies' 
contradictory findings do not reflect the 
larger population. Smoking-related 
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perturbations in the URT microbiome may 
take longer to manifest, which may be 
missed by alpha diversity indices measured 
during active COVID-19 infection (Bach et 
al., 2023). In addition, host genetics and 
other environmental exposures may 
influence the URT microbiome, potentially 
masking the effects of smoking (Hauptmann 
& Schaible, 2016). These findings imply that 
the relationship between smoking and the 
URT microbiome in COVID-19 patients is 
more complicated than previously 
anticipated and that a larger sample size of 
both smokers and non-smokers is necessary 
to accurately represent the population. 

In our study, the severity of COVID-19 was 
determined using quartile statistics to 
categorize lung damage levels. Although 
other clinical factors are typically considered 
when assessing the severity of COVID-19 
(Besutti et al., 2022; M & K, 2020), our 
classification method, which relies on 
statistics and COVID-19 severity 
classification (Cascella et al., 2024), ensures 
the reliability of our results. The beta 
diversity analysis did not reveal any 
significant differences in the URT 
microbiome between smokers and non-
smokers with varying degrees of lung 
damage (Figures 4 and 5). Nonetheless, a 
cluster of OTUs specific to non-smokers 
with moderate to severe lung damage was 
observed (Figure 6). A recent study 
discovered that the respiratory microbiome 
may vary among patients with different 
levels of COVID-19 severity, with a severe 
cohort having less bacterial diversity in the 
URT (Chen et al., 2022). Critical COVID-19 
patients also have a URT microbiome profile 
that is distinct from that of healthy 
individuals (Bai et al., 2022). This suggests 
that alterations in the URT microbiome may 
influence disease susceptibility and severity. 

The observed clustering, however, could be 
a coincidental finding or be confounded by 
other unmeasured factors, emphasizing the 
need for larger-scale studies with more 
comprehensive data. 

Our results revealed that Prevotella was the 
most abundant genus in the URT 
microbiome of both smoking and non-
smoking COVID-19 patients (Figure 7), 
consistent with previous research that 
identified Prevotella to be a prominent 
genus inhabiting the URT (Bassis et al., 
2015). While Prevotella is typically 
commensal organism, it can convert into  a 
pathogenic colonizer when exposed to 
cigarette smoke (Brook & Gober, 2005) or 
when confronted with respiratory ailments 
(Dickson & Huffnagle, 2015; Teo et al., 
2015). Additionally, the distribution of 
genera, such as Prevotella, Veillonella, and 
Streptococcus, has been recognized as 
dominant yet opportunistic pathogens in the 
URT microbiome of COVID-19 patients 
(Lynch, 2016). These genera can modulate 
the URT immune response and contribute to 
the progression of respiratory diseases, 
including COVID-19. Elevated levels of 
Prevotella have previously been observed in 
COVID-19 patients (Ventero et al., 2021), 
possibly due to its ability to facilitate mucus 
accumulation, which is diminished during 
COVID-19 (Robinot et al., 2021). This 
enables Prevotella to persist in the URT and 
metabolize mucus, thereby creating 
conditions that favor the growth of other 
pathogenic bacteria that are incapable of 
efficiently utilizing mucus. 

Intriguingly, we found that smokers have a 
higher percentage of Fusobacterium present 
in their URT than non-smokers (Figure 8). 
Fusobacterium is a gram-negative anaerobic 
bacterium that is commonly found in the 
URT (Brook, 2002), and its presence has 
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been linked to smoking (Gopinath et al., 
2022) and respiratory diseases (Chakraborty, 
2020). Smoking can alter the pH and oxygen 
levels in the URT, which can lead to 
increased inflammation and reduced 
immune surveillance (Stämpfli & Anderson, 
2009). Consequently, smoking may 
contribute to the prevalence of respiratory 
disease by promoting the proliferation of 
Fusobacterium. 
In terms of differential abundance, our study 
found that Streptobacillus was highly 
abundant in COVID-19 smokers (Figure 9), 
suggesting that smoking-induced changes in 
the URT microbiome may facilitate its 
growth. Note that Streptobacillus is 
naturally exists in the oral cavity (Kimura et 
al., 2008) and URT (Paegle et al., 1976) of 
rats and has long been recognized as the 
causative agent of strepto-bacillary rat-bite 
fever. In 2016, Lau et al. demonstrated that 
the human URT can serve as a reservoir for 
a species of Streptobacillus, S. 
hongkongensis. Interestingly, differential 
abundance testing recently showed a higher 
level of S. hongkongensis in the oral 
microbiome of smokers (Paegle et al., 1976). 
Nonetheless, because the relative frequency 
of this genus in our study was generally low 
among smokers, more research is necessary 
to establish Streptobacillus as a smoking 
signature. 
The study also had some limitations. First, 
the study was restricted by a lack of personal 
and clinical information from the open-
access repository, including comorbidities, 
medication use, duration of treatment, and 
recovery rate of COVID-19 patients. Second, 
the small sample size (n = 8) and unequal 
number of COVID-19 patients who smoke 
(n = 10) versus those who do not (n = 78) 
may reduce statistical power and hinder the 
possibility of establishing a correlation 

between smoking, URT microbiome, and 
COVID-19 severity in a larger population. 
Third, the 16S metagenomics used in our 
study has inherent limitations, such as low 
accuracy of classification below the genus 
level, and limited taxonomic resolution 
among closely related taxa (Poretsky et al., 
2014). In addition, the 16S metagenomics 
approach was unable to provide a functional 
analysis of the patient’s URT microbiome 
(Greenblum et al., 2012; Franzosa et al., 
2014), which could have provided more 
insights into its role in COVID-19 severity. 

CONCLUSION 

In conclusion, the URT microbiomes of both 
smoking and non-smoking COVID-19 
patients exhibited similar dominant genera, 
with Prevotella being the most abundant in 
both groups. However, the higher mean 
relative abundance of Fusobacterium in 
smokers suggests that smoking may alter the 
microbial composition of the URT. The 
levels of microbial diversity did not differ 
significantly between the two groups based 
on smoking status. Furthermore, the overall 
microbial composition and abundance 
patterns of the URT microbiomes were 
comparable across the subgroups in terms of 
smoking status and different levels of lung 
damage. However, there was a distinct 
cluster of OTUs specific to non-smokers 
with moderate and severe lung damage, 
which may contribute to the progression of 
lung damage in the COVID-19 non-smokers. 
More importantly, our observation indicates 
that Streptobacillus exhibited a higher 
abundance in smokers. The data suggest that 
it could potentially serve as a marker for 
distinguishing between smokers and non-
smokers in the URT. Nevertheless, further 
validation is required to ascertain its role as 
a definitive smoking signature. 
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