# WILD-TYPE *CAENORHABDITIS SINICA*, A MODEL NEMATODE FOR SPECIATION AND EVOLUTION, MASSIVELY FOUND IN VIETNAM

#### Le Tho Son<sup>1,⊠</sup>, Nguyen Thi Hong Gam<sup>1</sup>, Nguyen Thi Thu<sup>2</sup>, Do Thi Hong Loan<sup>3</sup>

<sup>1</sup>College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai Ward, Chuong My District, Hanoi, Vietnam
<sup>2</sup>F-school, Vietnam, National University of Forestry, Xuan Mai Ward, Chuong My District, Hanoi, Vietnam
<sup>3</sup>Basic Science Faculty, Bach Mai Medical College, Bach Mai Hospital, 78 Giai Phong Road, Dong Da District, Hanoi, Vietnam

<sup>III</sup>To whom correspondence should be addressed. E-mail: sonlt@vnuf.edu.vn

Received: 26.7.2023 Accepted: 20.9.2023

#### SUMMARY

*Caenorhabditis sinica* is a male/female species, in which the genetic diversity is possibly high. Thus, the species is advantageous for the understanding of the mechanisms of diversity, evolution, and adaptation within the nematode genus *Caenorhabditis*. Previous studies reported the geographic distribution of *C. sinica* only in China; nonetheless, this should be more convincing for its ecology. We allegedly surveyed the *Caenorhabditis* species and their diversity in the forests of Vietnam. We found 59 *C. sinica* strains, and this therefore indicates the vast variation that is 85.88% and 100% identical within isolated wild-type strains. They unequally present in habitats and are enormous in the northern forest, and rarer in the southern forest. The comparison of 18S rDNA barcode sequences from 59 *C. sinica* isolates by nucleotide sequence alignment showed the consistent diversity among the strains in or off the same ecologies, and all are comparable with the ever-first isolated strain JU727.

Keywords: Caenorhabditis briggsae, CFB strains, JU727, speciation

#### INTRODUCTION

Caenorhabditis sinica is a nematode within the genus Caenorhabditis and it was only reported to have a vast diversity within the territory of China (Wang et al., 2010; Le et al., 2023). The species and C. briggsae are supposed to be closest sisters and possibly descendants of a common ancestor. Caenorhabditis sinica is a male/female species while С. briggsae is an

androdioecious species. However, the mechanism of their speciation has remained uncovered (Howe, Denver 2008). So, the two species are fundamental to shed light on the biological evolution of the *Caenorhabditis* species. Consequently, the research of each species can accumulate the understanding of their speciation that took millions of years back.

Besides, C. sinica, with many wild-type

variants in the wild, inherits mutations in its genomes (Wang *et al.*, 2010), indicating they are samples for investigating the evolutionary strategies that are uncovered in the genus *Caenorhabditis*. Therefore, the wild-type isolates of *C. sinica* play a key role in an evo-devo manner.

Theoretically, C. sinica and C. briggsae would present in the same habitats. In previous studies, C. briggsae was found to distribute broader while C. sinica has been only found in the midlands of China (Howe, Denver 2008; Huang et al., 2014), which shares a long border with Vietnam, suggesting that C. sinica is restricted in Southeast Asia. In our recent research, we reported the presence of many Caenorhabditis nematodes including C. briggsae in the forests of Vietnam (Le et al., 2023). These indicate that C. sinica should present in the neighborhoods of China and Vietnam. In this research, we report the isolation of C. sinica from the vegetation samples that were collected from forests and the analyses of their molecular diversity using DNA barcodes.

## MATERIAS AND METHODS

### Media

NaCl; peptone; agar; nutrient agar; cooking oil; Yeast extract; cholesterol; CaCl2; MgSO4; KH2PO4; K2HPO4; pig fat and mushroom solutions. New Cheap Media No.18 (NcM18) (0.4 g of pig fat + 20 mL of mushroom solutions + 17 g of agar + 4 ml of 0.75g/L NaCl + 1 L distilled water); "Nematode Growth Media" (NGM) (1 mL of 5 mg/mL cholesterol + 2.5 g of peptone + 1 mL of 1M CaCl<sub>2</sub> + 1 mL of 1M MgSO<sub>4</sub> + 25 mL 1M KPO<sub>4</sub> + 17 g of agar + 4 mL of 0.75 g/mL NaCl + 1L water) (Le *et al.*, 2021).

#### Isolation of Caenorhabditis sinica strains

*Sampling*: Vegetation samples were collected alongside the main path from the main gate to Bong Station in Cuc Phuong National Park and alongside the main path from the main gate to Bau Sau Station in Cat Tien National Park)

Isolation: C. sinica was isolated as our previous description (Le *et al.*, 2021). Five to 10 g of each vegetation sample (decomposed leaves, rotten fruits and flowers) was placed on one *Escherichia coli* OP50-seeded media plate (10 cm) and incubated at room temperature (approximately 25°C) for three days. Subsequently, each of two worms per sample plate was transferred onto and grown on OP50-seeded media plate (5 cm) in a (19  $\pm$  1) °C for generations. The single worm raised its population so-called a strain.

Morphological selection: Determination of the Caenorhabditis nematodes is complicated and required experience. Each strain was classified by the clearance, the 1mm size and the rod shape of body, which were more likely similar to C. elegans under microscopes (4X). Further sorting was the pharyngeal morphologies, which had two circular bulbs under microscopic magnification (40X), again this was recognized as C. elegans (Barriere, 2006). Regarding to sexes, among the strain candidates, the ones presented two sexes (male and females) were gated.

## Species determination by molecular identification

Total DNA was isolated using "Single Worm Lysis" method for tiny nematodes (Ahringer, 2006; Le *et al.*, 2023). Part of the 18S rDNA sequence was amplified with two universal primers for nematodes (SSU18A (AAAGATTAAGCCATGCATG) and

#### Vietnam Journal of Biotechnology 21(3): 543-548, 2023

SSU26R (CATTCTTGGCAAATGCTTT CG-3') (Barriere, 2006)). Every PCR product was purified with MEGAquick-spin<sup>TM</sup> Plus Total Fragment DNA Purification Kit (iNtRON biotechnology) and got sequenced with the Sanger method by a sequencing service (ATCG Limited Co.). Each of the DNA sequences was proceeded for BLASTnt on the National Center for Biotechnology Information (NCBI).

#### **Phylogenetic analysis**

The phylogenesis of the 59 18S rDNA sequences was aligned and compared together. Next, the phylogeny was reconstructed using the Neighbor-Joining method on MEGA11 as in our previous study (Tamura *et al.*, 2021).

#### **RESULTS AND DISCUSSION**

Two hundred nematodes from 400

vegetation samples with estimated body for morphology the Caenorhabditid nematodes (a "two-bulb" pharynx, dioecy, transparency, and approximately 1 mm length) were isolated from forest vegetation samples. They were able to develop well on NcM18 as NGM. Comparisons of the approximate 800 bp-18S rDNA sequences of the Caenorhabditis nematode candidates with the DNA sequence database on NCBI (National Center for Biotechnology Information) presented 51 C. sinica strains from 50 sites in Cuc Phuong and seven from 50 sites in Cat Tien (Fig. 1). Moreover, we isolated one strain in Quoc Oai district in Hanoi. Previous sampling reported the finding of species in Bac Can Province (Wang et al., 2010). Thus, the species likely appears in many places throughout the country, suggesting more strains are living in the wild.



**Figure 1**. Two sexes presented in *C. sinica* populations, male (top) and female (bottom). Scale bar: 100  $\mu$ m.

Next, we compared the 18S rDNA sequences of the 59 genomes and found that they are different, of which 57 are 99.30% identical and two are lower (CFB23: 85.88% and CFB7: 90.90%) to the sequence EU19600 of the strain JU727 in China (Tables 1 and S1). These results indicate a higher diversity of *C. sinica* in Cuc Phuong than Cat Tien by 7.28 times (a strain ratio of 51/7). The phylogenic

analysis shows that likely 59 *C. sinica* have been evolved 18 times, and they are biased towards Cuc Phuong (Fig. 2). These results pursue the species discrimination of *C. sinica*, consistent with an unequal theme of the nematode distributions as in our previous reports on *C. briggsae* and parasitic *Halicephalobus* (Le *et al.*, 2023) between the long-distance forests.

Le Tho Son et al.



**Figure 2.** Phylogenetic tree of *C. sinica* strains isolated in Cat Tien (●), CFB235 in Quoc Oai, and the rest in Cuc Phuong.

546

|  | Vietnam Journa | al of Bioted | chnology <b>21</b> | (3) | ): 543-548, | 2023 |
|--|----------------|--------------|--------------------|-----|-------------|------|
|--|----------------|--------------|--------------------|-----|-------------|------|

| No.    | CFB catalogs | Identity (%) with    | Genbank Access | Sample sites <sup>‡</sup>     |
|--------|--------------|----------------------|----------------|-------------------------------|
|        | -            | EU19600 <sup>+</sup> | (NCBI)         | ·                             |
| 1      | CFB254       | 99,42                | OR130938       | cP37                          |
| 2      | CFB253       | 99.88                | OR130939       | cP20                          |
| 3      | CFB260       | 99.53                | OR130940       | cP34                          |
| 4      | CFB259       | 99.65                | OR130941       | cP34                          |
| 5      | CFB258       | 99.64                | OR130942       | cP32                          |
| 6      | CFB239       | 99.76                | OR130943       | cP9                           |
| °<br>7 | CEB238       | 99.88                | OR130944       | cP9                           |
| 8      | CFB237       | 99.76                | OR130945       | cP35                          |
| 9<br>9 | CEB236       | 99.88                | OR130946       | cP37                          |
| 10     | CEB245       | 99.76                | OR130947       | cP17                          |
| 10     | CFB244       | 99.65                | OR130948       | cP19                          |
| 12     | CFB243       | 99.65                | OR130949       | cP20                          |
| 12     | CFB242       | 99.65                | OR130950       | cP13                          |
| 14     | CFB241       | 99.64                | OR130951       | cP37                          |
| 15     | CER240       | 00.30                | OP130052       | cP21                          |
| 16     | CEB247       | 99,30                | OR130952       |                               |
| 17     | CEP246       | 99,70                | OR130955       | 0025                          |
| 10     | CEP265       | 99,70                | OR130954       | 0F20                          |
| 10     |              | 99,70<br>00 88       | OR 130955      |                               |
| 19     |              | 99,00<br>00 65       | OR 130930      |                               |
| 20     |              | 99,00<br>00,76       | OR 130957      |                               |
| 21     |              | 39,70                | OR 130958      | 0P9<br>-D20                   |
| 22     | CFB261       | 100                  | OR130959       | CP28                          |
| 23     | CFB87        | 99,64                | OR130960       | CP37                          |
| 24     | CFB68        | 99,64                | OR130961       | CP30                          |
| 25     | CFB78        | 99,88                | OR130962       | CP30                          |
| 26     | CFB66        | 99,76                | OR130963       | cP30                          |
| 27     | CFB91        | 99,65                | OR130964       | CP28                          |
| 28     | CFB96        | 99,65                | OR130965       | cP32                          |
| 29     | CFB75        | 99,53                | OR130966       | cP27                          |
| 30     | CFB93        | 99,53                | OR130967       | cP24                          |
| 31     | CFB79        | 99,76                | OR130968       | cP37                          |
| 32     | CFB108.1     | 99,64                | OR130969       | cT48                          |
| 33     | CFB77        | 99,76                | OR130970       | cP32                          |
| 34     | CFB94        | 99,76                | OR130971       | cP28                          |
| 35     | CFB88        | 99,76                | OR130972       | cP30                          |
| 36     | CFB98        | 99,76                | OR130973       | cP30                          |
| 37     | CFB60        | 99,64                | OR130974       | cP36                          |
| 38     | CFB56        | 99,64                | OR130975       | cP9                           |
| 39     | CFB70        | 99,76                | OR130976       | cP36                          |
| 40     | CFB69        | 99,76                | OR130977       | cP8                           |
| 41     | CFB64        | 99,88                | OR130978       | cP21                          |
| 42     | CFB57        | 99,64                | OR130979       | cP3                           |
| 43     | CFB92        | 99,64                | OR130980       | cP22                          |
| 44     | CFB90        | 99,53                | OR130981       | cP17                          |
| 45     | CFB72        | 99,65                | OR130982       | cP33                          |
| 46     | CFB67        | 99,64                | OR130984       | cP27                          |
| 47     | CFB20        | 99,64                | OR130985       | cP1                           |
| 48     | CFB9         | 99,64                | OR130986       | cP40                          |
| 49     | CFB23        | 85,88                | OR130987       | cP32                          |
| 50     | CFB7         | 90,90                | OR130988       | cP6                           |
| 51     | CFB2         | 99,53;-              | OR130989       | cP15                          |
| 52     | CFB40        | 99,76;-              | OR130990       | cT31                          |
| 53     | CFB44        | 99,88;-              | OR130991       | cT31                          |
| 54     | CFB38        | 100;-                | OR130992       | cT34                          |
| 55     | CFB45        | 99,76;-              | OR130993       | cT31                          |
| 56     | CFB161       | 99,53;-              | OR430994       | cP12                          |
| 57     | CFB102       | 99,76                | OR130983       | cT1                           |
| 58     | CFB108       | 99,76                | OR130936       | cT48                          |
| 59     | CFB235       | 99,76                | OR130937       | Hoa Thach, Quoc Oai,<br>Hanoi |
|        |              |                      |                | 20°56'39" N;<br>105°33'38"E   |

Table 1. Comparison of 18S rDNA sequences of C. sinica strains in Vietnam with EU19600 (JU727) in China.

<sup>†</sup> EU19600 is the first 18S rDNA sequence of *C. sinica* JU727 that was isolated from China. To see the detailed comparison of sequence alignments, access in the GenBank on NCBI (https://www.ncbi.nlm.nih.gov) and Table S1. <sup>†</sup>cT – Cat Tien National Park; cP – Cuc Phuong National Park. The 18S rDNAs were compared by BLAST in NCBI on May 27, 2023.

In addition, the isolates from Cuc Phuong are typically more diverse than those from Cat Tien (Fig. 2). According to the 18S rDNA sequences in this research, two strains (CFB108 and CFB108.1) changed at least 12 times and are more closely related to the strains from Cuc Phuong. We assume different possibilities, for example, the similarity of random changes during life histories and the mutual migration of strains within the two forests. In contrast, the four (CFB45, 44, 40, and 38) had four times and are apart from the strains in Cuc Phuong. Thus, the four of six isolates from Cat Tien likely evolved independently of the majority.

In conclusion, fifty-nine *C. sinica* were isolated from two national parks (Cuc Phuong and Cat Tien) and raised in the laboratory. The number of isolates and the comparison of 18S rDNA sequences revealed the divergence is higher in Cuc Phuong. This species will facilitate the study of evolution within the *Canorhabditis* nematodes.

**Acknowledgement:** We thank staffs in Cat Tien, and Cuc Phuong National Parks for sampling vegetation.

#### REFERENCE

Ahringer J (2006) Reverse genetics. *WormBook*. WormBook, The *C. elegans* Research Community.

Barriere A, Felix, MA (2006) Isolation of C.

*elegans* and related nematodes. *WormBook*. Community TCeR, WormBook: 1–9.

Howe D, Denver D (2008) Muller's Ratchet and compensatory mutation in *Caenorhabditis briggsae* mitochondrial genome evolution. *BMC Evol Biol* 8: 62.

Huang RE, Ren X, Qiu Y, Zhao Z (2014) Description of *Caenorhabditis sinica* sp. n. (Nematoda: Rhabditidae), a nematode species used in comparative biology for C. elegans. *PLoS ONE* 9(11): e110957.

Le T, Bui T, Ha B, Nguyen T (2023) The abundance of parasitic nematodes *Halicephalobus* species (Nematoda: Rhabditida) invading humans and animals in national parks of Vietnam. *Vietnam Journal of Biotechnolgy* 21(2): 9.

Le T, Ha B, Bui T (2023) Genetic biodiversity of the nematode *Caenorhabditis briggsae* from Ninh Binh, Dong Nai, and Lam Dong Provinces, Vietnam. *Vietnam Journal of Forestry Science* 3.

Le TS, Nguyen TTH, Thi Mai Huong B, Nguyen HG, Ha BH, Nguyen VS, Nguyen MH, Nguyen HH, Wang J (2021) Cultivation of *Caenorhabditis elegans* on new cheap monoxenic media without peptone. *J Nematol* 53.

Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Mol Biol Evol* 38(7): 3022– 3027.

Wang G, Ren S, Ren Y, Ai H, Cutter A (2010) Extremely high molecular diversity within the East Asian nematode *Caenorhabditis* sp. 5. *Mol Ecol* 19(22): 5022–5029.