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SUMMARY

Recent advances in metagenomics and bioinformatics allow the robust analysis of the

composition and abundance of microbial communities, functional genes, and their metabolic
pathways. So far, there has been a variety of computational/statistical tools or software for analyzing
microbiome, the common problems that occurred in its implementation are, however, the lack of
synchronization and compatibility of output/input data formats between such software. To overcome
these challenges, in this study context, we aim to apply the DADAZ2 pipeline (written in R
programming language) instead of using a set of different bioinformatics tools to create our own
workflow for microbial community analysis in a continuous and synchronous manner. For the first
effort, we tried to investigate the composition and abundance of coral-associated bacteria using their
16S rRNA gene amplicon sequences. The workflow or framework includes the following steps: data
processing, sequence clustering, taxonomic assignment, and data visualization. Moreover, we also
like to catch readers’ attention to the information about bacterial communities living in the ocean as
most marine microorganisms are unculturable, especially residing in coral reefs, namely, bacteria are
associated with the coral Acropora tenuis in this case. The outcomes obtained in this study suggest
that the DADAZ2 pipeline written in R programming language is one of the potential bioinformatics
approaches in the context of microbiome analysis other than using various software. Besides, our
modifications for the workflow execution help researchers to illustrate metagenomic data more easily
and systematically, elucidate the composition, abundance, diversity, and relationship between
microorganism communities as well as to develop other bioinformatic tools more effectively.

Keywords: 16S rRNA, Acropora tenuis, bioinformatics, coral-associated bacteria, R programming
language

INTRODUCTION

Less than 2% of the approximately 10%
microorganisms on earth can be cultured using
traditional methods (Wade, 2002). Therefore,
only a very small part of the benefits from
microorganisms are exploited, the remaining
potential is still a challenge. Healthy corals,
together with various microorganisms such as
bacteria, algae, fungi, viruses, form a community
living in close relationships in the coral mucus

layer, skeleton, and tissues (Rosenberg et al.,
2007). The most important role of organisms
living on corals is to provide coral nutrition and
play a protective role by synthesizing antibiotics
to fight pathogens (Kvennefors et al., 2012). The
dynamic equilibrium between organisms in coral
holobiont is the result of interactions between
symbiotic  microorganisms  under  certain
environmental conditions (Reshef et al., 2006).
Bacteria have been known to be an important
part of ecosystem function, participating in
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geochemical and ecosystem processes (Balser et
al., 2006) and being able to perform necessary
functions in the coral reef environment. Several
studies have demonstrated that there are
differences in the species composition of bacteria
between some corals (Bourne, Munn, 2005).
Besides, bacteria are potential subjects that play
an important role in coral health, the explorations
and clarifications of the interactions of whole
bacterial communities in the coral mucus layer
would be contributed by the examination of coral
bacteria, their composition and abundance.
Metagenomic studies have proposed that there
are a wide distribution and high diversity of
bacteria, phages in the mucus of organisms, such
as the intestinal tract, human respiratory tract,
and coral (Breitbart et al., 2002). Therefore, in
the direction of coral microbiological research,

bacterial studies are very necessary and
meaningful, contributing to  establish
fundamental science to identify the coral

pathogens and disease-forming mechanisms.
Thereby, we can have appropriate approaches for
the protection of coral health and toward
sustainable  development of coral reef
ecosystems.

Recently, one of the most significant events
in the field of microbial ecology has been the
emergence and development of metagenomics
(Thomas et al., 2012). Metagenomics is a new
approach of dry and wet laboratory technique
combination, aimed for determination and
nomenclature of microorganisms, especially
marine bacteria based on their DNA/RNA
sequences. It provides a tool to assess the
phylogenetic and functional aspects of
associated-coral bacterial diversity without the
need for lab cultivation and isolation of
individual species. It also helps determine the
species of community, metabolism, and
functional roles of the microbes in the
environmental sample (Langille et al., 2013).
Metagenomics provides genetic information on
evolutionary profiles of community, novel
enzymes or biocatalysts, genomic linkages
between  function, and phylogeny for
unculturable organisms. It is also a powerful tool
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for initiating new hypotheses of microbial
function. Metagenomics and the next-generation
sequencing (NGS) technology allow creating
huge sequencing data sets from a variety of
environments such as soil, the human body or
ocean water samples. The approach of
metagenomics based on direct extraction of
nucleic acids from environmental samples has
been shown to be highly effective for ecological
comparison and analysis, metabolic data
collection of microorganisms in complex
environments as well as identifying new
molecules using a library built from previously
isolated nucleic acids.

Besides, the support of bioinformatics tools,
especially the R programming language
(Callahan et al., 2016), is also a great help for
analyzing the metagenomic results. R is a
programming language and a developed
environment used in statistical computing and
graphics. The R language has many advantages,
such as helping users to store data and process
data effectively, render results in the form of
graphs that can be easily used by the users. The
R programming language can be used for free,
open-source, and installs on all operating
systems. Therefore, R is very suitable for use in
the field of biology that requires the processing
of huge amounts of data and the ability to
efficiently exploit data, especially in the field of
microbiome analysis. Besides, R has the strength
of the ability to display results in a graphical
form, allowing users to make visual assessments.
On the other hand, currently, the popular
bioinformatics software (FastQC, Mothur,
QIIME, Blast, SILVA) when used to analyze
thousands of sequences simultaneously, will
consume resources and slow down the computer.
Moreover, these softwares are designed and
developed by different companies, consequently,
the analysis will not be continuous due to
different input/output formats. Therefore, in
order to reduce software installation costs, save
time, increase compatibility and synchronization
for NGS data, the R programming language will
be used to develop into packages and pipelines to
perform all steps of analyzing and processing
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NGS data continuously and synchronously
instead of using each processing software for
each separate analysis step. Another advantage
when developing tools in R language is the
ability to use server resources to analyze massive
data sets according to the PCA - Principal
component analysis or other dimensions as Big
Data. It is also the inevitable trend for
bioinformatics in particular in the era of the 4.0
revolution.

Therefore, the study “Bioinformatic
approaches for analysis of coral-associated
bacteria using R programming language” was
carried out to take full advantage of
metagenomics and R programming language to
analyze the bacterial communities living in coral
Acropora tenuis.

MATERIALS AND METHODS

The dataset used in this study is highly-
overlapping Illumina 2x250 amplicon sequences
of the 16S RNA gene of bacteria living in the
coral Acropora tenuis, sequenced by the Illumina
next-generation sequencing technology. These
paired-end sequences were downloaded from the
public NCBI Genbank database (Accession
number: PRINA517286) with the format of
fastqfiles.

At first, the metagenomic sequence data was
processed by DADA2 package in R programming
language (Callahan et al., 2016) through the
following steps: filter and trim low-quality reads
(QC<30), dereplicate the filtered fastq files, infer
the sequence variants in each sample, merge the
denoised sequences, remove chimeric sequences,
mapping short sequence reads to a reference
genome and assign taxonomy, respectively.
Then, the composition and abundance of the
bacterial community were analyzed in Phyloseq
package to assess the phylogenetic and bacterial
diversity, and the results were visualized with
ggplot2 package subsequently.

The process of analyzing 16S metagenome
data using R programming language will be
carried out according to the following procedure:

Packages loading with function library()
library("Rcpp™)

library("dada2"); packageVersion("dada2")
library(“phyloseq™); packageVersion("phyloseq™)
library(“ggplot2"); packageVersion("ggplot2")
Metagenomic data preprocessing

path <-"/Users/pwd/16srRNA/" # Create a path for writing
and downloading data

The names of the fastq files must be checked
using some of the string-changing functions to
create two lists of F (forward) and R (reverse)
read file. The sequence files have the name of
Name_1.fastq or Name_2.fastq where 1 are the
forward file, and 2 stand for the reverse. The
above two types of sequences were grouped into
two different groups: fnFs and fnRs.

fnFs <- sort(list.files(path, pattern="_1.fastq", full.names
= TRUE))

fnRs <- sort(list.files(path, pattern="_2.fastq", full.names
= TRUE))

plotQualityProfile (fnFs [1: 2]) # Visualize the quality of
the first two reads of the forward sequence file

plotQualityProfile (fnRs [1: 2])

Assigning folder containing the filtered
sequences from the fastq.gz file

filt_path <- file.path (path, "filtered™) # Put filtered items in
the filtered subdirectory

out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs,
truncLen=c(220,220), maxN=0, maxEE=c(2,2), truncQ=2,
trimLeft=c(25,20) , rm.phix=TRUE, compress=TRUE,
multithread=TRUE) # Filter and trim low-quality
sequences

After filtering and trimming low-quality
reads (QC<30), DADAZ2 pipeline inferred
amplicon sequence variants (ASVs) — the unique
sequences from forward and reverse reads with
their abundances.

derepFs <- derepFastq(filtFs,
Dereplicate the filtered forward reads

verbose=TRUE) #

derepRs <- derepFastq(filtRs, verbose=TRUE)

errF  <- learnErrors(filtFs, multithread=TRUE) #
Calculate the sequence error rates of the forward reads

errR <- learnErrors(filtRs, multithread=TRUE)
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dadaFs <- dada(derepFs, err=errF, multithread=TRUE) #
Infer sequence variants from forward reads

dadaRs <- dada(derepRs, err=errR, multithread=TRUE)

Subsequently, DADA2 merged together the
inferred forward and reverse sequences and
eliminated the residual errors (non-overlap
paired sequences) to construct the ASVs table
(ASVs and their abundances).

mergers <- mergePairs(dadaFs, derepFs, dadaRs,
derepRs, verbose=TRUE) # Merge paired-end sequences

seqtab <- makeSequenceTable(mergers) # Construct ASVs
table

seqtab.nochim <- removeBimeraDenovo(seqtab, method =
“consensus”, multithread = TRUE, verbose = TRUE) #
Remove chimeric sequences from ASVs table

dim(seqtab.nochim)

sum(seqtab.nochim)/sum(seqtab) #  Calculate  the
percentage of remained sequences after removing the
chimera

If this value equals to 1, 0% of chimeric
sequences is removed from the ASVs table, and
if 0.9 then there are 10% of chimera are removed.

Taxonomy assignment

Download "silva_nr_v132_train_set.fa" and
"silva_species_assignment v132.fa" from
https://benjjneb.github.io/dada2/training.html
taxaRC <- assignTaxonomy(seqtab.nochim,

"/Users/pwd/Trainset/silva_nr_v132_train_set.fa",
tryRC=TRUE) # Assign taxonomy to genus level

taxaSp <- addSpecies(taxaRC,
"/Users/pwd/Trainset/silva_species_assignment_v132.fa")
# Assign taxonomy to species level

Microbiome analysis

The package phyloseq synthesized and
combined data into a phyloseq object containing
the ASVs table, taxonomic table, and sample
data table, which can be easily manipulated to
analyze microbiome.
ps <- phyloseq(otu_table(segtab.nochim,
taxa_are_rows=FALSE), tax_table(taxaSp),

sample_data(sampledata)) # Combine the ASVs table,
taxonomic table and sample data table into phyloseq object

Analyze the fluctuations of microorganisms at
different taxonomic ranks
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Filtering phyloseq objects at the "Phylum"
level with options

Bacphy<- ps %>%

+ tax_glom(taxrank = "Phylum") %>% # Combined data
at the phylum level

+ transform_sample_counts(function(x) {x/sum(x)} ) %>%
# Convert to a diversity analysis object

+ psmelt() %>% # Combine format

+ filter(Abundance > 0.02) %>% # Filter out low diversity
taxa

+ arrange(Phylum) # Arrange data frame alphabetically by
phylum

Illustration of the bacterial community
composition and abundance at phylum level

ggplot(Bacphy, aes(x = Samples, y = Abundance, fill =
Phylum)) # Assign values to axes

+ geom_bar(stat = "identity") + scale_fill_manual(values
= phylum_color) # set palette

+ facet_wrap(~feature, nrow=1, scales = "free_x") #
Separate by sample features

+ ylab("Relative Abundance (Phylum >0.02%)") # Assign
y axis name

+ scale_y_continuous(expand = ¢(0,0)) # Clear the space
below the 0 of the y-axis in the chart

+ ggtitle("Phylum Composition of microbiota™) # Assign
chart title

Microbiological component representation at
two consecutive classification levels (kingdom
and phylum)

treemap(Bacphy, index=c("Kingdom",
vSize="Abundance", type="index",

"Phylum"),

fontsize.labels=c(15,12), # Size of the label. Give size for
each aggregation level: size for group, size for subgroup

fontcolor.labels=c("white","black™), # The color format

of the labels

fontface.labels=c(2,1), # Label font: 1,2,3,4 for lowercase,
bold, italic, bold italics...

bg.labels=c("transparent™), # Background color of label
align.labels=list(c("center"”, "center"),
c("left", "bottom™)), # Where to put labels in rectangles?

overlap.labels=0.5, # Determine the tolerance for overlap
between labels

inflate.labels=F #If true, the label is larger when the
rectangle is larger
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palette = "Setl1", # Choose a palette from the RColorBrewer
presets or make your own

fontsize.title=12)

All of these above works were executed and
performed in R studio by R packages and
command lines to reduce software installation
costs, increase compatibility and
synchronization for metagenomic data. This is
the advantage of R programming language which
make it preeminent comparing to other
bioinformatic tools.

RESULTS AND DISCUSSION

Table 1. Filterandtrim statistic results of forward reads.

Reads.in Reads.out Frequency
(%)
SRR8491659 23013 20738 90.11
SRR8491657 37786 31047 89.12
SRR8491660 28360 26007 91.70
SRR8491663 32697 30103 92.07
SRR8491658 37158 33595 90.41
SRR8491656 39483 35678 90.36

Initially, the low-quality sequencing reads
(QC<30) were cleaned from the dataset by the
filterandtrim function. The results are shown in
table 1: 8-10% of the number of reads were
removed from the forward sequence data for all
samples. After filtering and trimming, the
cleaned database was verified again and
processed in further downstream analyses, which
were all executed by R packages and command
lines, as opposed to using bioinformatics tools
and software.

Subsequently, in the DADAZ2 pipeline, the
filtered data was dereplicated by inferring unique
sequences - amplicon sequence variants (ASVs)
with their abundances (the number of reads with
that ASV) — from sequencing reads. At the same
time, the DADAZ2 sequence inference step also
estimated the error rates of those filtered
sequences and removed all substitution and

errors from the data. After that, the forward and
reverse reads from the inferred unique sequences
were merged to construct the sequence table
containing the ASVs and the number of times
those sequences appear in each sample. Then,
about 35% of inferred sequences, which was
identified as chimeric sequences by DADAZ2,
was removed from the sequence table. By using
training sets from Silva reference database, we
obtained the taxonomic assignments for bacteria
living in the coral Acropora tenuis (Table 2).
These bacteria have been identified from
previous studies as regular occupants of coral
reefs. From this taxonomic table, the
composition and abundance of the bacterial
associations were accessed to analyze and
visualize  the  fluctuations of bacterial
communities at different taxonomic levels by the
phyloseq and ggplot2 packages of R.

The results in panel A, Figure 1 represent the
composition and abundance of the bacterial
association at the phylum level. The phylum
Proteobacteria dominates the community in all
six samples with a percentage of higher than 70%
of total identified bacteria, while the second
phylum in terms of quantity is Bacteroidetes.
Notably, the phylum Epsilonbacteraeota
accounts for a notable percentage in sample 2
and the phylum Dadabacteria in sample 3,
contributing to the community diversity. At class
level (Panel B), the bacterial classes with the
greatest contributions are Gammaproteobacteria
(phylum Proteobacteria), Alphaproteobacteria
(phylum  Proteobacteria) and Bacteroidia
(phylum Bacteroidetes). In addition, a noticeably
greater proportion of the class Campylobacteria
(phylum Epsilonbacteraeota) and Dadabacteriia
(phylum Dadabacteria) bacteria was contained in
samples 2 and 3, at 8 and 3% respectively. In
summary, the results in Figure 1 demonstrate that
the bacterial associations are diverse; and the
differences between the bacterial composition in
this study and other previously conducted
metagenomic characterizations are presumably
due to the dissimilar environmental conditions
and areas of sampling.
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Table 2. The first 20 bacterial species identified in the coral Acropora tenuis.

Kingdom Phylum Class Order Family Genus Species
Bacteria Proteobacteria =~ Gammaproteobacteria Oceanospirillales Nitrincolaceae Neptuniibacter NA
Bacteria Proteobacteria ~ Gammaproteobacteria Oceanospirillales Nitrincolaceae Neptuniibacter NA
Bacteria Proteobacteria  Alphaproteobacteria Rhizobiales Beijerinckiaceae Methylobacterium NA
Bacteria Bacteroidetes Bacteroidia Cytophagales Cyclobacteriaceae Reichenbachiella NA
Bacteria Bacteroidetes Gammaproteobacteria  Oceanospirillales Alcanivoracaceae Alcanivorax NA
Bacteria Proteobacteria  Alphaproteobacteria Rhodobacterales Rhodobacteraceae  Marivita cryptomonadis
Bacteria Actinobacteria  Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium NA
Bacteria Proteobacteria =~ Gammaproteobacteria Alteromonadales Idiomarinaceae Idiomarina NA
Bacteria Proteobacteria ~Gammaproteobacteria Alteromonadales Alteromonadaceae  Aestuariibacter NA
Bacteria Proteobacteria  Alphaproteobacteria Caulobacterales Hyphomonadaceae Maricaulis NA
Bacteria Proteobacteria  Alphaproteobacteria Rhodobacterales Rhodobacteraceae  Thalassobius NA
Bacteria Proteobacteria ~ Gammaproteobacteria Alteromonadales Colwelliaceae Thalassotalea sediminis
Bacteria Proteobacteria  Alphaproteobacteria Caulobacterales Hyphomonadaceae  Maricaulis NA
Bacteria Proteobacteria  Alphaproteobacteria Betaproteobacteriales  Burkholderiaceae Ralstonia NA

Burkholderia-

Caballeronia-
Bacteria Proteobacteria ~ Gammaproteobacteria Betaproteobacteriales  Burkholderiaceae Paraburkholderia NA
Bacteria Proteobacteria  Alphaproteobacteria Rhodobacterales Rhodobacteraceae = Roseobacter NA
Bacteria Proteobacteria  Alphaproteobacteria Sphingomonadales Sphingomonadaceae Erythrobacter NA
Bacteria Proteobacteria ~ Gammaproteobacteria Oceanospirillales Saccharospirillaceae Thalassolituus NA
Bacteria Proteobacteria ~ Gammaproteobacteria  Cellvibrionales Spongiibacteraceae  Spongiibacter NA
Bacteria Proteobacteria ~ Gammaproteobacteria Oceanospirillales Saccharospirillaceae Oleibacter marinus

After using the Silva training set and species
assignment, the coral-associated bacterial data
was processed to analyze the microbiome and the
diversity of the bacterial community at the genus
level (Figure 2). Nine genera Alteromonas

(phylum Proteobacteria, class
Gammaproteobacteria), Endozoicomonas
(phylum Proteobacteria, class

Gammaproteobacteria), Neptuniibacter (phylum
Proteobacteria, class Gammaproteobacteria),
Thalassolituus (phylum Proteobacteria, class
Gammaproteobacteria), Oleibacter (phylum
Proteobacteria, class
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Gammaproteobacteria), Erythrobacter (phylum
Proteobacteria, class Alphaproteobacteria),

Roseobacter (phylum Proteobacteria, class
Alphaproteobacteria), Ekhidna (phylum
Bateroidetes, class Bacteroidia), Ruegeria
(phylum Proteobacteria, class
Alphaproteobacteria) were quite abundant in all
six samples.

In summary, the six analyzed bacterial
associations living in coral Acropora tenuis are
almost all similar to each other, the number of
common bacteria is quite large with great
diversity. However, there is still a degree of
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variation in composition, such as the genus and 5, which has been shown to be an etiological
Vibrio making up a notable amount in samples 2 factor of coral bleaching in previous studies.

Phylum Composition of microbiota Class Composition of microbiota
1 2 3 4 5 1 2 3 4 5 6

5
075 075
Class
Phylum Alphaproteobacteria
Bacteroidetes Bacteroidia
Dadabacteria . Campylobacteria
B eosionvacteracota W costida
50 B Firmicutes B oadabacteriia
B Marinimicrobia_(SAR406_clad B oetaproteobacteria
W Pancomycetes B Gammaproteobacter
B Proteovactena [ Leptospirae
[ spirochactes B Francomycetacia
B soiochactia
025 025
0.00

Figure 1. Composition and abundance of bacterial communities at phylum (A) and class (B) level. The bar charts
show taxonomic classification of bacterial reads from pooled DNA amplicon from different locations into phylum
and class level using DADA2 (classification applied 50% confidence thresholds). The two right corners next to
each chart indicates bacterial phyla and classes with the relative abundances bigger than 0.02% of the total
bacteria.

Relative Abundance
°

Relative Abundance
g

Genus Composition of microbiota

1 2 4 5 6
=
Genus
075 Acatoanaerobium | Wl venyiophaga B ruegeria
Acinetobacter B Fusivacter W venyiotenora [ soiniepens
B restuaribacter Gilvibacter B nepunivacter W sainisphacra
— W resuariceta Halobacteriovorax. [Jf| orebacter Bl sediminispirochacta
- B Acanivorax B Horvaspiitum [l oeipnius W swa
3 | 238 1544 W ovz_cace 1 sneathielta
é B Averomonas Leisingera B eionea ‘Spongiibacter
300 [ Avcobacter W oivaciius [ Porticoceus B renaciacuum
. B Aueeispia [ [ o
2 W sdymizobiom Litorivivens Bl Psevsovacteriovorax [ Thatassoltus
] — | Burkholderia-Caballeronia-Paraburkholderia | Luteibacter Bl Pseudomonas W thaiasstaiea
Candidatus_Defluviella
I crocinitomix Maricaulis Ralstonia W mowium
Bl oonghicoa Marinobacter I Raoutota B unbureta
| W vorcosciom [l Reichenbachieta [ vibrio
025 B encozoicomonas W vaivovum B Roscobacter B voeseia
— W corovacer B vocimivacer [ Romia W zrongshania
000 . l .

Figure 2. Composition and abundance of viral communities at genus level. The bar charts show taxonomic
classification of bacterial reads from pooled DNA amplicon from different locations into genus level using DADA2
(classification applied 50% confidence thresholds). The right corners next to bar chart indicates bacterial genera
with the relative abundances higger than 0.02% of the total bacteria.
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Gammaproteobacteria

I Bacteroidia

Sphingomonadales

Nitrincolaceae Cyclobacteriaceae | Saccharospirillace

|
i
} Rhodobacterace
‘,—.A.Itemmonad_ame,;

Erythrobacter

| Endozoicomonadaceae
Hyphomonadaceae

Burkholderiaceae

Porticoccacese

Spongiibacteraceae

Figure 3. Microbiological component representation at class and order level (A) along with family and genus
level (B). The treemap shows bacterial proportion in two consecutive taxonomic ranks (class and order - A, family
and genus - B); the white letters indicate bacteria with higher taxonomic ranks and the black are the lower

consecutive ranks.

The result of the treemaps in Figure 3
indicates the composition of the bacterial
community and also highlights the dominance of
certain bacteria at each taxonomic level. For
example, in panel A, it shows the bacterial
composition at the order level in each class and
which order accounts for the highest amounts of
total bacteria, similar to family and genus level
in panel B. From the results shown, the
"treemap" function seems to have remarkable
advantages in data visualization, indeed, it
provides not only an overview but also highlights
the constituents and proportion of bacterial
communities in two successive taxonomic levels.

Overall, the composition and abundance of
marine bacterial communities were illustrated in
details. Being the largest in terms of composition
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in our study, the phylum Proteobacteria also
constitutes the most abundant and diverse
microbial group on Earth (Bradley, Pollard,
2017; Spain et al., 2009), including pathogenic
species such as Salmonella (Cortese et al., 2016;
Mithal et al., 2017), Campylobacter (Mithal et
al., 2017), Helicobacter, Vibrio, and Escherichia
(Cortese et al., 2016). Moreover, the phylum
Epsilonbacteraeota which makes up for a
remarkable percentage in sample 2 has recently
been reclassified, previously classified as
phylum Proteobacteria. Based on the assessment
of nearly 300 phylogenetic tree topologies, it was
reported that Epsilonproteobacteria within the
Proteobacteria is not warranted, and this group
was reassigned to a novel phylum under the
proposed name Epsilonbacteraeota (phyl. nov.)
(Waite et al., 2017). This phylum is crucial
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chemolithotrophic primary producers in deep-
sea hydrothermal vent systems, in which they are
often the dominant bacterial lineage in vent
plumes and deposits (Flores et al., 2011; Huber
et al., 2010). Dadabacteria is only observed in
sample 3. Appealingly, the Dadabacteria have
the potential to degrade microbial particulate
organic matter, particularly peptidoglycan and
phospholipids. The marine Dadabacteria were
divided into two clades with distinctive
ecological niches in worldwide metagenomic
data: a shallow clade with the potential for
photoheterotrophy through the utilization of
proteorhodopsin, exist principally in surface
waters up to 100m depth; and a deep clade that is
more varied in the deep photic zone without the
photoheterotrophic potential (Graham, Tully,
2020).

In the amplicon workflow, DADA2
discovered more real variants and output fewer
spurious sequences and more reference strains
than other methods (Callahan et al., 2016). This
could be the reason why the taxonomic
assignment witnessed the most efficiency in
DADAZ2 pipeline, compared to other commonly
used algorithms. There was still a variety of
unclassified taxonomy which was called “NA”
or “Unknown”. However, the limitation of
assigned microbial species is one of the
drawbacks of using sequencing technology for
practical analyses of 16 S rRNA metagenomic
(Whon et al., 2018). This is not specific to
DADA2: other popular bioinformatic also
algorithms achieved low accuracy in taxa
prediction using SILVA database. High within-
sample accuracies are rarely achieved at the
species level (Escobar-Zepeda et al., 2018).

These results have shown how microbial
identification at the genus level has can provide
useful fundamental information for further in-
depth studies. In the future, phylogenetic
analysis, functional prediction and phage-host
interaction should be performed following
analyses similar to ours to broaden
understanding about the functions of microbial
communities and their interactions in the context
of specific habitats.

CONCLUSION

In this study, the taxonomic assignment,
composition and diversity of the coral
microbiome were successfully accessed and
analyzed by the means of bioinformatics, in this
case the R language. The metagenomic dataset
was processed through the DADA2 pipeline of R
in a continuous manner, which is a more optimal
approach compared to the use of a typical
bioinformatics pipeline. R studio interface grants
users more control over the operation, which
includes steps such as executing the command
line and visualizing the results in graphical
forms. All the steps are linked together to ensure
the synchronization and compatibility of input
and output format of the database via the R object
and environment. Therefore, this study has
shown the potential of the R programming
language in analyzing metagenomic data.
Further development and optimization of R and
existing bioinformatic tools for data analysis and
visualization ~ will aid  researchers in
understanding the diversity, function, and
relationships between microbial communities in
different environmental conditions.
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CACH TIEP CAN TIN SINH HQC TRONG VIEC PHAN TiCH CAC QUAN XA VI
KHUAN SONG TREN SAN HO BANG NGON NGU LAP TRINH R

DPoan Thi Nhung?, Bui Vian Ngoc'?

Vién Cong nghé sinh hoc, Vién Han 1am Khoa hoc va Cong nghé Viét Nam
Hoc vién Khoa hoc va Cong nghé, Vién Han 1am Khoa hoc va Céng nghé Viét Nam

TOM TAT

Nhiing tién bo gan day trong nghién ctru da h¢ gen va tin sinh hoc da cho phép céc nha khoa hoc
phan tich téng thé vé da dang sinh hoc, thanh phan va sb luong cua cac quan x4 vi sinh vat, ciing nhu
cac gen chirc nang va cac con dudng trao dbi chét cua chung. Cho den nay da c6 rat nhiéu cong cu va
phan mém tinh toan/thong ké dé phan tich vi sinh vat. Tuy nhién, vén dé gap phai kha phd bién la su
thiéu dong bo va tinh tuong thich vé cac loai dinh dang dir liéu dau ra/dau vao gitra cac phan mém
véi nhau. Bé khic phuyc tro ngai nay, ching téi sir dung DADA?2 pipeline duoc viét trén ngén ngir 1ap
trinh R dé stra dol va cai tién ching thay vi sir dung cac phan mém tin sinh hoc khac thanh cong cu
phan tich cac quan x& vi khuan mot cach lién tuc va dong bg. Trong budc dau nghién ciu, ching toi
thir nghiém phan tich thanh phan va sé luong vi khuan séng trén san hd dua trén trinh ty gen 16S
rRNA cuaa ching. Quy trinh 1am viéc bao gém cac budc sau: xir ly dit liéu, phan cum trinh ty, gan
don vi phan loai, truc quan ket qua. Hon nita, chlng t0i ky vong huéng doc gid chu y. dén thong tin
rang cac quan xa vi khuan séng trong dai duong hau hét Ia céc vi sinh vat khéng nudi Cay duogc, trong
d6 ¢ vi sinh vat song trén san hd ndi chung va san hd Acropora tenuis ndi riéng. Két qua thu dugc
trong nghién ciru nay cho thdy DADA2 pipeline viét trén ngon ngir lap trinh R 1a mét trong nhiing
cong cu tin sinh hoc tng dung tiém ning trong linh viéc phan tich cac quan x4 vi sinh vat thay vi sir
dung cac phan mém riéng r& khéc nhau. Bén canh do, cac stra d6i trong quy trinh lam viéc caa ching
t6i ciing gitp cac nha nghién ctru dé dang minh hoa mot céch c6 hé théng cac dir liéu metagenomic,
lam sang to thanh phan, su phong phu, su da dang va méi quan hé giita cac quan x4 vi sinh vat, ciing
nhu dé phét trién céc cong cu tinh sinh hoc khac mot cach hiéu qua.

Tir khod: 16S rRNA, Acropora tenuis, tin sinh hoc, vi khudn séng trén san hd, ngén ngiz ldp trinh R.

743



