Phytochemical analysis, antioxidant, and antibacterial activities of crude and partially purified extracts of Portulaca oleracea leaves

Demy Valerie Chacon, Kiana Alika Co, Daphne Noreen Enriquez, Aubrey Love Labarda, Reanne Eden Manongsong, Edward Kevin B. Bragais
Author affiliations

Authors

  • Demy Valerie Chacon Department of Biology, School of Science and Engineering, Ateneo De Manila University, Quezon City, Philippines
  • Kiana Alika Co Department of Biology, School of Science and Engineering, Ateneo De Manila University, Quezon City, Philippines
  • Daphne Noreen Enriquez Department of Biology, School of Science and Engineering, Ateneo De Manila University, Quezon City, Philippines
  • Aubrey Love Labarda Department of Biology, School of Science and Engineering, Ateneo De Manila University, Quezon City, Philippines
  • Reanne Eden Manongsong Department of Biology, School of Science and Engineering, Ateneo De Manila University, Quezon City, Philippines
  • Edward Kevin B. Bragais Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Philippines

DOI:

https://doi.org/10.15625/2615-9023/21657

Keywords:

Antibacterial activity, antioxidant capacity, liquid-liquid extraction, polyphenolic metabolites, Portulaca oleracea

Abstract

The increasing antibiotic resistance among pathogens has driven the search for natural alternatives, particularly plant-based antimicrobials. This study investigates the antioxidant and antibacterial activities of Portulaca oleracea, a plant renowned for its polyphenolic constituents. The leaves were extracted using solvents of varying polarities to obtain different fractions for analysis. Qualitative phytochemical screening revealed a rich profile of polyphenolic compounds, including flavonoids, tannins, phenolic acids, and anthocyanins. The crude methanolic extract exhibited significant (p < 0.05) antioxidant activities against DPPH (50.08 ± 2.49%), superoxide (42.61 ± 0.56%), and hydroxyl (6.60 ± 0.94%). Furthermore, this extract demonstrated antibacterial efficacy, displaying zones of inhibition (ZOI) against Staphylococcus aureus (8.95 ± 0.19 mm) and Escherichia coli (7.18 ± 0.26 mm). Meanwhile, the polyphenol-rich aqueous fraction exhibited the highest antioxidant activities among the tested extracts (p < 0.05) with potent antibacterial activities against S. aureus (ZOI = 11.21 ± 0.11 mm) and E. coli (ZOI = 10.21 ± 0.18 mm). The bioactivities may be linked to polyphenolic compounds like quercetin, herbacetin, and rhamnetin, as identified by UPLC-MS. The high total phenolic content (181.58 ± 5.34 mg GAE/g) in the aqueous fraction aligns with its strong antioxidant and antibacterial effects (p < 0.05). These results suggest the potential of P. oleracea as a natural source of antibacterial agents and warrant further investigation into its mechanisms of action.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Afsar T., Razak S., Shabbir M. & Khan M. R., 2018. Antioxidant activity of polyphenolic compounds isolated from ethyl-acetate fraction of Acacia hydaspica R. Parker. Chemistry Central Journal, 12(1): 5. https://doi.org/10.1186/s13065-018-0373-x

Aisyah S., Oktavia A., Ayuningtyas A., Putra R., Prassiska S., Jamilah S. & Nurcholis W., 2023. Short Communication: Differences in phytochemical compounds and antioxidant activity of Portulaca oleracea and Portulaca grandiflora. Biodiversitas Journal of Biological Diversity, 24. https://doi.org/10.13057/ biodiv/d240307

Akiyama H., Fujii K., Yamasaki O., T Oono & K Iwatsuki, 2001. Antibacterial action of several tannins against Staphylococcus aureus. the Journal of Antimicrobial Chemotherapy/Journal of Antimicrobial Chemotherapy, 48(4): 487–491. https://doi.org/10.1093/jac/48.4.487

Almashad A., Ibrahim Ramadan G. & Abdelrazek R., 2020. Phytochemicals, Antioxidant and Volatile Compounds Evaluation of Egyptian Purslane Leaves. Arab Universities Journal of Agricultural Sciences, 0(0): 0–0. https://doi.org/ 10.21608/ajs.2019.17942.1100

Al-Quwaie D. A., Aminah Allohibi, Majidah Aljadani, Alghamdi A. M., Asmaa Ali Alharbi, Baty R. S., Qahl S. H., Saleh O., Amani Osman Shakak, Alqahtani F. S., Khalil F., El-Saadony M. T. & Saad A. M., 2023. Characterization of Portulaca oleracea Whole Plant: Evaluating Antioxidant, Anticancer, Antibacterial, and Antiviral Activities and Application as Quality Enhancer in Yogurt. Molecules/Molecules Online/Molecules Annual, 28(15): 5859–5859. https://doi.org/10.3390/molecules 28155859

Álvarez-Martínez F. J., Barrajón-Catalán E., Herranz-López M. & Micol V., 2021. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90: 153626. https://doi.org/ 10.1016/j.phymed.2021.153626

Ao K., 2019. Investigation of antioxidant activity (in vitro) and gas chromatography-mass spectrometry profiling of portulaca oleracea l. And portulaca grandiflora hook. Extracts. Asian Journal of Pharmaceutical and Clinical Research, 348–352. doi: 10.22159/ajpcr.2019.v12i3.30621

Barnham K. J., Masters C. L. & Bush A. I., 2004. Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 3(3): 205–214. https://doi.org/ 10.1038/nrd1330

Borges A., Ferreira C., Saavedra M. J. & Simões M., 2013. Antibacterial activity and mode of action of ferulic and Gallic acids against pathogenic bacteria. Microbial Drug Resistance (Larchmont, N.Y.), 19(4): 256–265. https://doi.org/ 10.1089/mdr.2012.0244

Cai Y., Luo Q., Sun M. & Corke H., 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17): 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

Capita R. & Alonso-Calleja C., 2013. Antibiotic-Resistant Bacteria: A Challenge for the Food Industry. Critical Reviews in Food Science and Nutrition, 53(1): 11–48. https://doi.org/10.1080/10408398.2010.519837

Chang S.T., Wu J. H., Wang S. Y., Kang P. L., Yang N. S. and Shyur L. F., 2001. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem., 49: 3420–3424. https://doi.org/10.1021/jf0100907

Collignon P. & Beggs J. J., 2019. Socioeconomic Enablers for Contagion: Factors Impelling the Antimicrobial Resistance Epidemic. Antibiotics, 8(3): 86. https://doi.org/10.3390/antibiotics8030086

Cushnie T. P. & Lamb A. J., 2005. Antimicrobial activity of flavonoids. International journal of antimicrobial agents, 26(5): 343–356. https://doi.org/ 10.1016/j.ijantimicag.2005.09.002

Dabbou S., Lahbib K., Pandino G., Dabbou S. & Lombardo S., 2020. Evaluation of Pigments, Phenolic and Volatile Compounds, and Antioxidant Activity of a Spontaneous Population of Portulaca oleracea L. Grown in Tunisia. Agriculture, 10(8): 353. https://doi.org/10.3390/ agriculture10080353

Dasgupta A. & Klein K., 2014. Chapter 2-Methods for Measuring Oxidative Stress in the Laboratory. In A. Dasgupta & K. Klein (Eds.), Antioxidants in Food, Vitamins and Supplements (pp. 19–40). Elsevier. https://doi.org/10.1016/B978-0-12-405872-9.00002-1

Desta Z. Y. & Cherie D. A., 2018. Determination of antioxidant and antimicrobial activities of the extracts of aerial parts of Portulaca quadrifida. Chemistry Central Journal, 12(1). https://doi.org/10.1186/s13065-018-0514-2

Di Meo F., Lemaur V., Cornil J., Lazzaroni R., Duroux J.-L., Olivier Y. & Trouillas P., 2013. Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. The Journal of Physical Chemistry A, 117(10): 2082–2092. https://doi.org/10.1021/jp3116319

Ecevit K., Barros A. A., Silva J. M. & Reis R. L., 2022. Preventing microbial infections with natural phenolic compounds. Future Pharmacology, 2(4): 460–498. https://doi.org/10.3390/futurepharmacol2040030

Erkan N., 2012. Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chemistry, 133(3): 775–781. https://doi.org/10.1016/ j.foodchem.2012.01.091

Fernández-Poyatos, María del Pilar, Eulogio J. Llorent-Martínez, and Antonio Ruiz-Medina, 2021. Phytochemical Composition and Antioxidant Activity of Portulaca oleracea: Influence of the Steaming Cooking Process. Foods, 10(1): 94. https://doi.org/10.3390/foods10010094

Fu J., Cao H., Wang N., Zheng X., Lu Y., Liu X., Yang D., Li B., Zheng J. & Zhou H., 2008. An anti-sepsis monomer, 2’,5,6’,7-tetrahydroxyflavanonol (THF), identified from Scutellaria baicalensis Georgi neutralizes lipopolysaccharide in vitro and in vivo. International immunopharmacology, 8(12): 1652–1657. https://doi.org/10.1016/ j.intimp.2008.07.017

Gawrońska-Grzywacz M., Krzaczek T., Nowak R., Los R., Malm A., Cyranka M. & Rzeski W., 2011. Biological activity of new flavonoid from Hieracium pilosella L. Open Life Sciences, 6(3): 397−404. https://doi.org/10.2478/s11535-011-0017-9

Huang Q., Liu X., Zhao G., Hu T. & Wang Y., 2018. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition (Zhongguo Xu Mu Shou Yi Xue Hui), 4(2): 137–150. https://doi.org/10.1016/j.aninu. 2017.09.004

Kanner J., 2023. Food Polyphenols as Preventive Medicine. Antioxidants, 12(12): Article 12. https://doi.org/ 10.3390/antiox12122103

Katz L. & Baltz R. H., 2016. Natural product discovery: past, present, and future. Journal of Industrial Microbiology & Biotechnology, 43(2–3): 155–176. https://doi.org/10.1007/s10295-015-1723-5

Kauffmann A. C. & Castro V. S., 2023. Phenolic compounds in bacterial inactivation: A perspective from Brazil. Antibiotics (Basel, Switzerland), 12(4): 645. https://doi.org/10.3390/antibiotics12040645

Keser F., Karatepe M., Keser S., Tekİn S., Türkoğlu İ., Kaygİlİ O., Kirbag S., 2021. In vitro biological activities and phytochemical contents of Portulaca oleracea L. (Purslane). J. Phys. Chem. Funct. Mat., 4: 1–7.

Khursheed A. & Jain V., 2021. Phytochemical screening, antioxidant, and antimicrobial activity of different Portulaca oleracea L. extracts growing in Kashmir Valley. Journal of Biochemical Technology, 12(3): 1–8. https://doi.org/10.51847/sfpnn91fux

Kim J., Lim J., Kang B. Y., Jung K. & Choi H. J., 2017. Capillarisin augments anti-oxidative and anti-inflammatory responses by activating Nrf2/HO-1 signaling. Neurochemistry international, 105: 11–20. https://doi.org/10.1016/j.neuint.2017.01.018

Lawal A. M., Lawan M. M. & Apampa S. A., 2019. Phytochemical Analysis and Thin Layer Chromatography Profiling of Crude Extracts from GuieraSenegalensis (Leaves). Open Access Journal of Chemistry, 3(3): 7–12. doi: 10.22259/2637-5834.0303002

Lee H., Krishnan M., Kim M., Yoon Y. K. & Kim Y., 2022. Rhamnetin, a Natural Flavonoid, Ameliorates Organ Damage in a Mouse Model of Carbapenem-Resistant Acinetobacter baumannii-Induced Sepsis. International journal of molecular sciences, 23(21): 12895. https://doi.org/ 10.3390/ijms232112895

Li L., Sapkota M., Kim S. W. & Soh Y., 2016. Herbacetin inhibits RANKL-mediated osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Eur. J. Pharmacol., 777: 17–25.

Mancuso G, Midiri A, Gerace E, Biondo C., 2021. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10(10): 1310. doi: 10.3390/pathogens 10101310

Mancuso G., Midiri A., Gerace E. & Biondo C., 2021. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10(10): 1310. https://doi.org/10.3390/ pathogens10101310

Manrique-de-la-Cuba M. F., Gamero-Begazo P., Valencia D. E., Barazorda-Ccahuana H. L. & Gómez B., 2019. Theoretical study of the antioxidant capacity of the flavonoids present in the Annona muricata (Soursop) leaves. Journal of molecular modeling, 25(7): 200. https://doi.org/ 10.1007/s00894-019-4083-7

Martínez J. L. & Baquero F., 2014. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 119(2): 68–77. https://doi.org/10.3109/ 03009734.2014.901444

Mirghani R., Saba T., Khaliq H., Mitchell J., Do L., Chambi L., Diaz K., Kennedy T., Alkassab K., Huynh T., Elmi M., Martinez J., Sawan S. & Rijal G., 2022. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiology, 8(3): 239–277. https://doi.org/10.3934/microbiol.2022019

Okafor I. A. & Ezejindu, D. N., 2014. Phytochemical studies on Portulaca oleracea (purslane) plant. GJBAHS, 3(1): 132–136.

Pan Y., Qin R., Hou M., Xue J., Zhou M., Xu L. & Zhang Y., 2022. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Separation and Purification Technology, 300: 121831–121831. https://doi.org/10.1016/ j.seppur.2022.121831

Periferakis A., Periferakis K., Badarau I. A., Petran E. M., Popa D. C., Caruntu A., Costache R. S., Scheau C., Caruntu C. & Costache D. O., 2022. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. International journal of molecular sciences, 23(23): 15054. doi: 10.3390/ijms232315054

Pilar del, Llorent-Martínez E. J. & Ruiz-Medina A., 2021. Phytochemical Composition and Antioxidant Activity of Portulaca oleracea: Influence of the Steaming Cooking Process. Foods, 10(1): 94–94. doi: 10.3390/foods10010094

Rollando R., Kurniawan C. D., Nurdiani R., Timur S. Y. W. & Moza P. G., 2019. Simple and rapid method for isolating anthocyanin from wild mulberry (Morus nigra L.). Jurnal Farmasi Sains Dan Komunitas (Journal of Pharmaceutical Sciences and Community), 16(1): Art. 1. https://doi.org/10.24071/jpsc.001675

Scalbert A., 1991. Antimicrobial properties of tannins. Phytochemistry, 30(12): 3875–3883. https://doi.org/10.1016/0031-9422(91)83426-l

Sedik A. A., Hussein D. T., Fathy K. et al., 2024. Neuroprotective and cognitive enhancing effects of herbecetin against thioacetamide induced hepatic encephalopathy in rats via upregulation of AMPK and SIRT1 signaling pathways. Sci Rep., 14: 11396. https://doi.org/ 10.1038/s41598-024-61639-6

Seo Kyoung-Sun & Jeong Hyung-Jin & Yun Kyeong-Won, 2010. Antimicrobial activity and chemical components of two plants, Artemisia capillaris and Artemisia iwayomogi, used as Korean herbal Injin. Journal of Ecology and Field Biology, 33: 141−147. doi: 10.5141/JEFB.2010.33.2.141

Shamsudin N. F., Ahmed, Q. U., Mahmood, S., Ali Shah, S. A., Khatib, A., Mukhtar, S., Alsharif, M. A., Parveen, H., & Zakaria, Z. A., 2022. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules (Basel, Switzerland), 27(4): 1149. https://doi.org/10.3390/molecules27041149

Sharma N., Biswas S., Al-Dayan N., Alhegaili A. S. & Sarwat M., 2021. Antioxidant Role of Kaempferol in Prevention of Hepatocellular Carcinoma. Antioxidants (Basel, Switzerland), 10(9): 1419. https://doi.org/10.3390/antiox10091419

Shi S., Zhao Y., Zhou H., Zhang Y., Jiang X. & Huang K., 2008. Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography-diode array detection-radical-scavenging detection-electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. Journal of chromatography A, 1209(1–2): 145–152. https://doi.org/10.1016/j.chroma.2008.09.004

Štumpf S., Hostnik G., Primožič M., Leitgeb M., Salminen J.-P. & Bren U., 2020. The effect of growth medium strength on minimum inhibitory concentrations of tannins and tannin extracts against E. coli. Molecules (Basel, Switzerland), 25(12): 2947. https://doi.org/10.3390/molecules 25122947

Suriyaprom S., Mosoni P., Leroy S., Kaewkod T., Desvaux M. & Tragoolpua Y., 2022. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants, 11(3): 602. https://doi.org/10.3390/antiox11030602

Teleanu D. M., Niculescu A.-G., Lungu I. I., Radu C. I., Vladâcenco O., Roza E., Costăchescu B., Grumezescu A. M. & Teleanu R. I., 2022. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 23(11): 5938. doi: 10.3390/ijms23115938

Teoh E. S., 2015. Secondary Metabolites of Plants. Medicinal Orchids of Asia: 59–73. https://doi.org/10.1007/978-3-319-24274-3_5

Vaou N., Stavropoulou E., Voidarou C., Tsigalou C. & Bezirtzoglou E., 2021. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms, 9(10): 2041. doi: 10.3390/ microorganisms9102041

Velu G., Palanichamy V. & Rajan A. P., 2018. Phytochemical and Pharmacological Importance of Plant Secondary Metabolites in Modern Medicine. In S. M. Roopan & G. Madhumitha (Eds.), Bioorganic Phase in Natural Food: An Overview (pp. 135–156). Springer International Publishing. https://doi.org/ 10.1007/978-3-319-74210-6_8

WHO, 2023. Antimicrobial Resistance. World Health Organization; WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Xu X., Yu L. & Chen G., 2006. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 41(2): 493–499. https://doi.org/10.1016/ j.jpba.2006.01.013

Xu X., Yu L. & Chen G., 2006. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. Journal of pharmaceutical and biomedical analysis, 41(2): 493–499. https://doi.org/10.1016/ j.jpba.2006.01.013

Yang L., Wen K.-S., Ruan X., Zhao Y.-X., Wei F. & Wang Q., 2018. Response of Plant Secondary Metabolites to Environmental Factors. Molecules, 23(4): 762. https://doi.org/10.3390/molecules230 40762

Zeb A., 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/jfbc.13394

Zhang H. & Tsao R., 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8:

33–42. doi: 10.1016/j.cofs.2016.02.002

Zhou Y.-X., Xin H.-L., Rahman K., Wang S.-J., Peng C. & Zhang H., 2015. Portulaca oleraceaL.: A Review of Phytochemistry and Pharmacological Effects. BioMed Research International, 2015: 1–11. https://doi.org/10.1155/2015/925631

Zhu H., Wang Y., Liu Y., Xia Y. & Tang T., 2010. Analysis of Flavonoids in Portulaca oleracea L. by UV–Vis Spectrophotometry with Comparative Study on Different Extraction Technologies. Food Analytical Methods, 3(2): 90–97. https://doi.org/ 10.1007/s12161-009-9091-2

Downloads

Published

27-03-2025

How to Cite

BRAGAIS, E. K., Alika Co, K., Enriquez, D. N., Labarda, A. L., Manongsong, R. E., & B. Bragais, E. K. (2025). Phytochemical analysis, antioxidant, and antibacterial activities of crude and partially purified extracts of <em> Portulaca oleracea </em> leaves. Academia Journal of Biology, 47(1), 11–18. https://doi.org/10.15625/2615-9023/21657

Issue

Section

Articles