Antioxidant activity study and GC-MS profiling of leaves, stem and root extracts of Spermadictyon suaveolens Roxb.
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/20624Keywords:
Spermadictyon suaveolens, antioxidant property, phytochemical analysis, hydroalcoholic plant extract, GC-MS analysis, EC50.Abstract
The characterization of bioactive components in the methanolic and isopropyl alcoholic plant extracts of Spermadictyon suaveolens Roxb. (Rubiaceae) was undertaken with the help of GC-MS technique, followed by the study of free-radical scavenging capabilities of the plant hydroalcoholic extracts using DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) test technique with ascorbic acid as the standard. There’s a constant formation of free radicals in the human body tissues originating due to the oxidation of specific chemical components, whereas the antioxidant molecules prevent or inhibit this free radical formation that may lead to lifelong or terminal diseases. The comparison of the antioxidant capacity of the plant extracts with that of the standard revealed that the leaf extracts showed maximum inhibition of DPPH, or radical scavenging activity. The EC50 values of ascorbic acid, leaves, stem, and root were found to be 18.62 µg/mL, 44.668 µg/mL, 89.125 µg/mL, and 97.723 µg/mL, respectively. The different peaks in the GC-MS analysis spectrum determined 24, 19, and 26 phytochemicals in leaves, stems, and roots, respectively. Out of all the phytoconstituents found, the major ones were n-Hexadecanoic acid or palmitic acid, squalene, 1.4-tert-Butylcalix[4]arene, and 1.3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one in leaves. 11-Bromoundecanoic acid, Ethylhexanol, Tetratetracontane, 2-Decanol, Propanoate in Stem, and n-Hexadecanoic acid 9,12-Octadecadienoic acid (Z,Z), 4,6-Bis(4-fluoro-3-(trifluoromethyl) phenoxy)-2-pyrimidinol, squalene in roots. Thus, the different bioactive constituents found to be present in the plant under study prove that the plant has the capacity to exhibit good antioxidant and other pharmacological properties.
Downloads
Metrics
References
Abubacker M. N. & Deepalakshmi T., 2013. In vitro antifungal potentials of bioactive compound methyl ester of hexadecanoic acid isolated from Annona muricata Linn. (Annonaceae) leaves. Biosciences Biotechnology Research Asia, 10(2): 879–884.
Aissaoui N., Mahjoubi M., Nas F., Mghirbi O., Arab M., Souissi Y., Hoceini A., Masmoudi A. S., Mosbah A., Ameur C., Klouche-K. N., 2019. Antibacterial Potential of 2,4-Di-tert-Butylphenol and Calixarene-Based Prodrugs from Thermophilic Bacillus licheniformis Isolated in Algerian Hot Spring. Geomicrobiology Journal, 36(1): 53–62.
Akeem A., Ekunseitan D. A. & Oguntoye M., 2020. Phytochemicals Analysis and GC-MS Determination of Ethanolic Extracts of Azadirachta indica and Mangifera indica Stem Bark and their Biological Potentials. The Pacific Journal of Science and Technology, 21(1): 219–229. http://www.akamaiuniversity.us/PJST.htm
Alexander B., Browse D. J., Reading S. J., Benjamin I. S. A simple and accurate mathematical method for calculation of the EC 50.1999. J Pharmacol Toxicol, 14: 55–58.
Amudha M., & Rani S., 2014. Assessing the Bioactive Constituents of Cadaba fruticosa (l.) druce through GC-MS. International Journal of Pharmacy and Pharmaceutical Sciences, 6(2): 283–285. http://whqlibdoc.who.int/hq/2002/who_edm_trm_2002.1.pdf
Arista R. A., Priosoeryanto B. P. & Nurcholis W., 2023. Profile Volatile Compounds in Essential Oils on Different Parts of Cardamom with Antioxidant Activity. Biointerface Research in Applied Chemistry, 13(4).
Ayandiran Aina D. & Fagbemi K. O., 2022. In vitro antioxidant activities and quantitative chemical composition of alcohol-based extracts of Adansonia digitata fruit pulp: A comparative study. Advance Pharmaceutical Journal, 1: 1–15.
Arirudran B., Anbarasu K., & Kannan S., 2023. Gas Chromatography-Mass Spectrometry (GC-MS) Determination of Bioactive components from Corallocarpus epigaeus L Rhizome. Asian Journal of Medicine and Biomedicine, 7(2): 96–108.
Bharathithasan M., Ravindran D. R., Rajendran D., Chun S. K., Abbas S. A., Sugathan S., Yahaya Z. S., Said A. R., Oh W. Da, Kotra V., Mathews A., Amin M. F. M., Ishak I. H. & Ravi R., 2021. Analysis of chemical compositions and larvicidal activity of nut extracts from Areca catechu Linn against Aedes (Diptera: Culicidae). PLoS ONE, 16(11).
Bonita Wowor K., Bodhi W., Datu O. S. & L Windah A. L., 2022. Antidiabetic Activity Test of Bitter gourd Extract as Inhibitor of α-Glucosidase Enzyme by in Silico. Pharmacon, 11(4): 1754–1762. https://www.researchgate.net/publication/366325730
Carmine A. A. & Brogden R. N. (n.d.), 1985. Drug Evaluation Pirenzepine: A Review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Efficacy in Peptic Ulcer Disease and Other Allied Diseases. England. pp. 104–114.
Chen Z., Bertin R. & Froldi G., 2013. EC50 estimation of antioxidant activity in DPPH* assay using several statistical programs. Food Chemistry, 138(1): 414–420.
Chou P. Y., Huang G. J., Pan C. H., Chien Y. C., Chen Y. Y., Wu C. H., Sheu M. J. & Cheng H. C., 2011. Trilinolein inhibits proliferation of human non-small cell lung carcinoma A549 through the modulation of PI3K/Akt pathway. American Journal of Chinese Medicine, 39(4): 803–815.
Degfie T., Endale M., Aliye M., Eswaramoorthy R., Nefo Duke T. & Dekebo A., 2024. In Vitro Antibacterial, Antioxidant, Cytotoxicity Activity, and In Silico Molecular Modelling of Compounds Isolated from Roots of Hydnora johannis. Biochemistry Research International, 2024(1).
Di Vincenzo A., Tana C., El Hadi H., Pagano C., Vettor R. & Rossato M., 2019. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: Clinical implications for vitamin E supplementation in diabetic kidney disease. International Journal of Molecular Sciences, 20(20).
Duke J. A., 1992. Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton: CRC Press. https://phytochem.nal.usda.gov/ [accessed: 20/07/2024]
Duraisamy M. & Selvaraju R., 2020. Analysis Of Bioactive Compounds by Gas Chromatography-Mass Spectrum and Anti-Bacterial Activity of Zonaria Crenata. AEGAEUM JOURNAL, 8(10): 829–844.
Entigu R., Linton A., Jerah @, Lihan S. & Bin Ahmad I., 2013. The Effect of Combination of Octadecanoic Acid, Methyl Ester and Ribavirin Against Measles Virus. International Journal of Scientific & Technology Research, 2(10). www.ijstr.org
Gancar M., Kurin E., Bednarikova Z., Marek J., Mucaji P., Nagy M., & Gazova Z., 2023. Green tea leaf constituents inhibit the formation of lysozyme amyloid aggregates: An effect of mutual interactions. International Journal of Biological Macromolecules, 242: 1–9.
Gandhi Y., Kumar V., Singh G., Prasad S. B., Mishra S. K., Soni H., Rawat H., Singh S., Charde V., Gupta A., Dhanjal D. S., Jha S. K., Tandon S., Bhagwat P., Arya J. C., Ramamurthy P. C., Acharya R., Narasimhaji C. V., Singh A., Webster T. J., 2024. Chemoprofiling and medicinal potential of underutilized leaves of Cyperus scariosus. Scientific Reports, 14(1).
Gębarowska E., Prockow J., Pietr S. J., Stanis£Aw J. Pietr & Antoni Szumny, 2017. Antimicrobial Activity of Essential Oil and Furanocoumarin Fraction of Three Heracleum Species. Polish Pharmaceutical Society, 74: 2723–2728. https://www.researchgate.net/publication/314880914
Goda M. S., Eltamany E. E., Habib E. S., Hassanean H. A., Ahmed S. A., Abdelhameed R. F. A. & Ibrahim A. K. (n.d.)., 2020. Gas Chromatography-Mass Spectrometry Analysis of Marine Seagrass Thalassodendron ciliatum Collected from Red Sea. Rec. Pharm. Biomed. Sci. B., 4(2): 1–15.
Hasan M. R., Haque M. M., Hoque M. A., Sultana S., Rahman M. M., Ali Shaikh M. A., & Sarker M. K. U., 2024. Antioxidant activity study and GC-MS profiling of Camellia sinensis Linn. Heliyon, 10(1).
Islam M. T., Ali E. S., Uddin S. J., Shaw S., Islam M. A., Ahmed M. I., Chandra Shill M., Karmakar U. K., Yarla N. S., Khan I. N., Billah M. M., Pieczynska M. D., Zengin G., Malainer C., Nicoletti F., Gulei D., Berindan-Neagoe I., Apostolov A., Banach M., Atanasov A. G., 2018. Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121: 82–94.
Javed S., Javaid A., Hameed Al-Taie A. & Zahid Qureshi M., 2018. Identification of antimicrobial compounds from n-hexane stem extract of Kochia indica by GC-MS analysis. 16(2): 51–55.
Jin X., Zhou J., Richey G., Wang M., Choi Hong S. M. & Hong S. H., 2021. Undecanoic acid, lauric acid, and N-tridecanoic acid inhibit Escherichia coli persistence and biofilm formation. Journal of Microbiology and Biotechnology, 31(1): 130–136.
Jin-Cheol Yoo, Ji-Man Han, Seung-Kwan Nam, Ok-Hyun Ko, Cheol-Hee Choi, Kuen-Hong Kee, Jae-Kyung Sohng, Jung-Sun Jo & Chi-Nam Seong, 2002. Characterization and Cytotoxic Activities of Nonadecanoic Acid Produced by Streptomyces scabiei subsp. chosunensis M0137 (KCTC 9927). The Journal of Microbiology, 40(4): 331–334.
Jitendra R., Sonu R. & Rudra Narayan S., 2015. Chemical Study of Fatty Acids in Mimusops Elengiseeds by Gc-Ms and Comparison of Its Antibacterial Activity With Trimethoprim. World Journal of Pharmaceutical Research. 4(12): 1022–1028. www.wjpr.net
K J. T. & Khaleel K. M., 2020. Gc-Ms Analysis of Bioactive Components of Kandelia candel (L.) Druce. Journal of Advanced Scientific Research, 11(4): 193–197. http://www.sciensage.info
Kalaivani C. S., Sahaya Sathish S., Janakiraman N. & Johnson M., 2012. GC-MS studies on Andrographis paniculata (Burm.f.) Wall. ex Nees-A medicinally important plant. Int. J. Med. Arom. Plants, 2(1): 69–74. http://www.openaccessscience.com
Kitahara T., Koyama N., Matsuda J., Aoyama Y., Hirakata Y., Kamihira S., Kohno S., Nakashima M. & Sasaki H., 2004. Antimicrobial Activity of Saturated Fatty Acids and Fatty Amines against Methicillin-Resistant Staphylococcus aureus. Biol. Pharm. Bull, 27(9): 1321–1326.
Kundlik Pawar M., Ashok Dwivedi J. & Kataria Dwivedi U., 2023. Structural Elucidation of Chemical Compounds of Pharmacological Significance from Convolvulus Pluricaulis by Gas Chromatography: Mass Spectroscopy (Gc-Ms) Analysis. International Journal of Current Advanced Research, 12(7): 2221–2226.
Mohamed Zaky Zayed, Badruddin Ahmad F., Wei-Seng Ho & Pang S., 2014. GC-MS Analysis of Phytochemical Constituents in Leaf Extracts of Neolamarckia Cadamba (Rubiaceae) From Malaysia. Int J Pharm Pharm Sci, 6(9): 123–127.
Muhammad Ajaib, Shazia Khalid, U. H. nif., 2014. Spermadictyon suaveolens: A Potential natural antimicrobial and antioxidant source. International Journal of Phytomedicine, 6: 256–267.
Nagarjunakonda S., Amalakanti S., Dhishana S. R., Ramaiah M. & Rajanala L., 2017. GC-MS analysis of indrakeeladri native medicine used in the treatment of stroke. Pharmacognosy Journal, 9(1): 102–106.
Nakai M., Kinoshita Y., Fukase M. & Fujita T., 1987. PHORBOL Esters Inhibit Phosphate Uptake in opossum Kidney Cells: A Model of Proximal Renal Tubular Cells. Biomedical and Biophysical Research Communications, 145(1): 303–308.
Naser E. H., Mahdi L. S. & Alasadi R. T., 2022. Phytochemical Constituents and Pharmacological Activity of Malva parviflora plant: A Review. Sci. J. Med. Res, 6(23): 35–44.
Olajuyigbe Olufunmiso O. & Afolayan Anthony J., 2011. Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata Willd. subsp. mucronata Willd. BMC Complementary and Alternative Medicine, 11(130): 1–8.
Patil K. & Singh D. M., 2022. GC-MS Analysis of fresh water Cylindrospermum sp. PCC518, Cylindrospermum sp. PCC 567 ethanol and hexane extracts. International Journal of Herbal Medicine, 10(3). www.florajournal.com
Pierre Luhata L., Usuki T., Hirao M. & Mori N., 2023. Chemical composition and antioxidant activity of the hexane fraction from leaf extracts of Odontonema strictum. American Journal of Essential Oils and Natural Products, 11(1): 12–16. www.essencejournal.com
Ríos J. L. & Máñez S., 2018. New Pharmacological Opportunities for Betulinic Acid. Planta Medica, 84(1): 8–19.
Rios K., Vélez C. & Zayas B., 2019. Cell Death Effects of the Phthalate 2-Ethyl-1-Hexanol on Human Linfoblast Cells. Open Journal of Apoptosis, 08(01): 1–15. https://doi.org/10.4236/ojapo.2019.81001
Selvaraj M., Tennyson J., Kumar T. S., Rao M. V., Senbagalakshmi P., Muthukrishnan S., Jebasingh T., Kumar T. S., Rao M. V, Scholar R. & Senthil Kumar T., 2019. Squalene, Biosynthesis and its role in production of bioactive compounds, A Proper Scientific Challenge-A Review. Journal of Emerging Technologies and Innovative Research, 6(2): 505–526. https://www.researchgate.net/publication/331917304
Thuy Dung D. T., Trang T. H., Khanh Linh L. T., Tan D. Van & Phuong Hoa L. T., 2018. Second Metabolites and Antioxidant, Antimicrobial, Anticancer Activities of Helicteres hirsuta Root Extract. Academia Journal of Biology, 40(3): 45–51.
Urbina J. A., Visbal G., Contreras L. M., Mclaughlin G. & Docampo R., 1997. Inhibitors of 24(25) Sterol Methyltransferase Block Sterol Synthesis and Cell Proliferation in Pneumocystis carinii. Antimicrobial Agents and Chemotherapy, 41(7): 1428–1432. https://journals.asm.org/journal/aac
Včeláková H., Hill M., Lapčík O. & Pařízek A., 2007. Determination of 17α-hydroxypregnenolone sulfate and its application in diagnostics. Steroids, 72(4): 323–327. https://doi.org/10.1016/j. steroids.2006.11.026
Warren E. C., Dooves S., Lugarà E., Damstra-Oddy J., Schaf J., Heine V. M., Walker M. C. & Williams R. S. B., 2020. Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signalling. Biological Sciences, 1–9.
Xiao F., Xu T., Lu B., & Liu R., 2020. Guidelines for antioxidant assays for food components. In Food Frontiers, 1(1): 60–69. John Wiley and Sons Inc.
Yasa S. R., Poornachandra Y., Kumar C. G. & Penumarthy V., 2017. Synthesis, characterization, antimicrobial and anti-biofilm activity of a new class of 11-bromoundecanoic acid-based betaines. Medicinal Chemistry Research, 26(10): 2592–2601.
Zs O., Oo O., Se K. & Oo A., 2017. Stachytarpheta jamaicensis leaf extract: Chemical composition, antioxidant, anti-arthritic, anti-inflammatory and bactericidal potentials. Journal of Scientific and Innovative Research, 6(4): 119–125. www.jsirjournal.com
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Divya Lobo P., Aparna Saraf
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.