Expression of a drought-responsive helix-loop-helix transcription factor OsbHLH061 in rice (Oryza sativa ssp. japonica)

Pham Thi Minh Thu, Yeon-Ki Kim, Baek-Hie Nahm
Author affiliations

Authors

  • Pham Thi Minh Thu Nha Trang University
  • Yeon-Ki Kim 2Division of Bioscience and Bioinformatics, Myongji University, Yongin, Korea. 3GreenGene Biotech Inc., Yongin, Korea
  • Baek-Hie Nahm Division of Bioscience and Bioinformatics, Myongji University, Yongin, Korea. 3GreenGene Biotech Inc., Yongin, Korea

DOI:

https://doi.org/10.15625/2615-9023/20517

Keywords:

Drought, helix-loop-helix, multi-locus trait, OsbHLH061, transcription factor

Abstract

Water scarcity poses a significant global challenge for agriculture, growing increasingly severe and widespread. Urgent measures are needed to develop crops that can withstand drought conditions. Recently, the method of transferring genes, particularly transcription factors, has emerged as a promising approach to enhance plant tolerance to stress. Genes are selected based on their differential expression patterns during stress, which can be identified through transcriptome analysis. In this research, the helix-loop-helix transcription factor OsbHLH061 was identified among up-regulated genes in microarray data derived from mRNA extracted from rice plants exposed to various abiotic stresses. The increased expression of OsbHLH061 under drought conditions was confirmed by quantitative real-time PCR (qRT-PCR). Its promoter analysis using the GUS reporter gene revealed spatial regulation of OsbHLH061 in germinating seeds, leaves, and root tips of young seedlings. Overexpression of OsbHLH061 was achieved by introducing the gene into rice plants under the control of the promoter of Rab21 in response to abscisic acid 21. However, transgenic plants did not exhibit any significant advantages in drought resistance compared to wild-type plants. These findings suggested the need for a different expression system. Moreover, the lack of significant changes in phenotype despite altering this transcription factor indicated a multi-locus nature of drought resistance associated with this gene.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Agarwal P. K., Agarwal P., Reddy M. K., Sopory S. K., 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep., 25: 1263–1274. http://doi.org/10.1007/ s00299-006-0204-8

Bhatnagar-Mathur P., Vadez V., Sharma K. K., 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep., 27: 411–424. http://doi.org/10.1007/s002 99-007-0474-9

Bomblies K., 2000. Whole mount GUS staining. In: Weigel D, Glazebrook J (eds) Arabidopsis: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 243–245

Choe Y.-H., Kim Y-S., Kim I.-S., Bae M.-J., Lee E.-J., Kim Y.-H., Park H.-M., Yoon H.-S., 2013. Homologous expression of γ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J. Plant Physiol., 170(6): 610−618. https://doi.org/ 10.1016/j.jplph.2012.12.002

Cushman J. C., Bohnert H. J., 2000. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol., 3: 117–124. http://doi.org/ 10.1016/s1369-5266(99)00052-7

Du H., Shen X., Huang Y., Huang M., Zhang Z., 206. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biol., 16: 35. http://doi.org/ 10.1186/s12870-016-0728-1

Ganguly M., Roychoudhury A., Sarkar S. N., Sengupta D. N., Datta S. K., Datta K., 2011. Inducibility of three salinity/abscisic acid-regulated promoters in transgenic rice with gusA reporter gene. Plant Cell Rep., 30: 1617–1625. https://doi.org/ 10.1007/s00299-011-1072-4

Hasthanasombut S., Supaibulwatana K., Mii M., Nakamura I., 2011. Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tissue Organ Cult. (PCTOC), 104: 79–89. https://doi.org/10.1007/s11240-010-9807-4

Hu W., Huang C., Deng X., Zhou S., Chen L., Li Y., Wang C., Ma Z., Yuan Q., Wang Y., Cai R., Liang X., Yang G., He G., 2013. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ., 36(8): 1449−64. http://doi.org/10.1111/ pce.12074

Hussain S. S., Kayani M. A., Amjad M., 2011. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol. Prog., 27: 297–306. http://doi.org/10.1002/btpr.514

International Rice Research Institute, 2002. Standard Evaluation System for Rice. Available at http://www.knowledge-bank.irri.org/images/docs/rice-standard-evaluation-system.pdf

Ito Y., Katsura K., Kyonoshin M., 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol., 47:141–153. https://doi.org/10.1093/pcp/pci230

Jang I. C., Nahm B.H., Kim J. K., 1999. Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol. Breed., 5: 453–461.

Jang Y. H., Park J. R., Kim E. G., Kim K. M., 2022. OsbHLHq11, the Basic Helix-Loop-Helix Transcription Factor, Involved in Regulation of Chlorophyll Content in Rice. Biology (Basel), 11(7): 1000. http://doi.org/10.3390/biology11071000

Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K., 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 17: 287–291. https://doi.org/10.1038/7036

Kim J. S., Park H.-M., Chae S., Lee T.-H., Hwang D.-J., Oh S.-D., Park J.-S., Song D.-G., Pan C.-H., Choi D., Kim Y.-H., Nahm B.-H., Kim Y.-K., 2014. A Pepper MSRB2 Gene Confers Drought Tolerance in Rice through the Protection of Chloroplast-Targeted Genes. PLoS ONE, 9(3): e90588. https://doi.org/10.1371/ journal.pone.0090588

Korinsak S., Darwell C. T., Wanchana S., Praphaisal L., Korinsak S., Thunnom B., Patarapuwadol S., Toojinda T., 2021. Identification of Bacterial Blight Resistance Loci in Rice (Oryza sativa L.) against Diverse Xoo Thai Strains by Genome-Wide Association Study. Plants, 10: 518. https://doi.org/10.3390/plants 10030518

Lata C., Yadav A., Prasad M., 2011. Role of plant transcription factors in abiotic stress tolerance. In: Shanker A, Venkateswarlu B (eds.) Abiotic stress response in plants -Physiological, biochemical and genetic perspective, ISBN 978-953-307-672-0, http://doi.org/10.5772/23172

Li X., Duan X., Jiang H., Sun Y., Tang Y., Yuan Z., Guo J., Liang W., Chen L., Yin J., Ma H., Wang J., Zhang D., 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol., 41(4): 1167−84. http://doi.org/10.1104/ pp.106.080580

Liu W. X., Zhang F. C., Zhang W. Z., Song L. F., Wu W. H., Chen Y. F., 2013. Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2 and PR5 expressions in response to drought stress. Mol. Plant, 6: 1487–1502. http://doi.org/10.1093/mp/sst031

Minh Thu P. T., 2014. Characterization of a homeobox transcription factor OsWOX13 induced during acute dehydration in rice. Dissertation in Biological Science, Myongji university, Korea.

Minh Thu P. T., Kim J. S., Chae S., Jun K. M., Lee G. S., Kim D.-E., Cheong J.-J., Song S. I., Nahm B. H., Kim Y.-K, 2018. A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice. Mol. Cells. 41(8): 781−798. http://doi.org/10.14348/molcells.2018.0203

Mundy J., Chua N. H., 1988. Abscisic acid and water stress induce the expression of a novel rice gene. EMBO J., 7: 2279–2286. http://doi.org/10.1002/j.1460-2075.1988.tb 03070.x

Novák J., Pavlu J., Novák O., Nozková-Hlavácková V., Spundová M., Hlavinka J., Koukalová S., Skalák J., Cerny M., Brzobohaty B., 2013. High cytokinin levels induce a hypersensitive-like response in tobacco. Ann Bot., 12: 41–55. http://doi.org/10.1093/aob/mct092

Peng X., Ma X., Fan W., Su M., Cheng L., Iftekhar A., Lee B-H., Qi D., Shen S., Liu G., 2011. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep., 30: 1493–1502. https://doi.org/ 10.1007/s00299-011-1058-2

Downloads

Published

27-03-2025

How to Cite

Pham, T. M. T., Kim, Y.-K., & Nahm, B.-H. (2025). Expression of a drought-responsive helix-loop-helix transcription factor <em> OsbHLH061</em> in rice <em> (Oryza sativa ssp. japonica) </em>. Academia Journal of Biology, 47(1), 19–31. https://doi.org/10.15625/2615-9023/20517

Issue

Section

Articles