Endophytic actinomycetes from mangrove plant \(\textit{Avicennia marina}\) in Quang Ninh province, Vietnam: distribution, cytotoxicity, and antioxidant activities

Quach Ngoc Tung, Bui Thi Lien, Vu Thi Hanh Nguyen, Nguyen Thi Thu An, Chu Hoang Ha, Quyet Tien Phi
Author affiliations

Authors

  • Quach Ngoc Tung 1Graduate University of Science and Technology, VAST, Vietnam 2Institute of Biotechnology, VAST, Vietnam
  • Bui Thi Lien Institute of Biotechnology, VAST, Vietnam
  • Vu Thi Hanh Nguyen 1Graduate University of Science and Technology, VAST, Vietnam 2Institute of Biotechnology, VAST, Vietnam
  • Nguyen Thi Thu An Graduate University of Science and Technology, VAST, Vietnam
  • Chu Hoang Ha \(^{1}\)Graduate University of Science and Technology, VAST, Vietnam \(^{2}\) <BR> Institute of Biotechnology, VAST, Vietnam
  • Quyet Tien Phi Institution of Biotechnology, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/2615-9023/17492

Keywords:

Avicennia, anticancer, antioxidant, Avicennia marina, mangrove, Streptomyces. cacaoi

Abstract

Mangrove endophytes have recently gained considerable attention due to their diversity and abundance of novel bioactive secondary metabolites. Despite the fact that Streptomyces species are producers of more than 75% of commercialized antibiotics, Streptomyces associated with the extremely widespread mangrove plant Avicennia marina remain poorly characterized. In this study, nine actinomycetes were isolated from A. marina growing in a mangrove forest, as yet unexplored, of Quang Ninh province, Vietnam. Phylogenetic analysis of actinomycetes-specific 16S rRNA sequences indicated that they were subjected to five Streptomyces species including Streptomyces cacaoi, Streptomyces californicus, Streptomyces enissocaesillis, Streptomyces coelicoflavus, and Streptomyces variabilis, which have not been previously reported in mangrove plants. Among them, S. cacaoi AM1 showed strong inhibition effects against six tested pathogenic bacteria with inhibitory zones ranging from 7.5−22.3 mm. Using standard 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, 100 µg/mL ethyl acetate extract of AM1 showed potent cytotoxicity against breast cancer MCF-7 and lung cancer A549 cell lines with cell viability of 16.5 ± 1.28% and 17.69 ± 2.3%, respectively. As for antioxidant activities, AM1 extract exhibited strong antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical (92.4 ± 0.004%) and superoxide anion radical (42.4 ± 0.019%), which were positively correlated to high polyphenol (84.3 ± 3.4 µg GAE/g FW) and flavonoid (34.9 ± 4.8 µg QE/g FW) contents. These findings indicated that S. cacaoi AM1 could be a promising reservoir of antibacterial, anticancer, and antioxidant agents. This is the first report of mangrove endophytic Streptomyces derived from A. marina.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Balouiri M., Sadiki M., Ibnsouda S. K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal, 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005 https://doi.org/10.1016/j.jpha.2015.11.005">

Belknap K. C., Park C. J., Barth B. M., Andam C. P., 2020. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep, 10(1): 2003. https://doi.org/10.1038/ s41598-020-58904-9 https://doi.org/10.1038/ s41598-020-58904-9">

da Silva M. H. R., Cueva-Yesquén L. G., Júnior S. B., Garcia V. L., Sartoratto A., de Angelis D. d. F., de Angelis D. A., 2020. Endophytic fungi from Passiflora incarnata: an antioxidant compound source. Arch. Microbiol, 202(10): 2779–2789. https://doi.org/10.1007/s00203-020-02001-y https://doi.org/10.1007/s00203-020-02001-y">

Dholakiya R. N., Kumar R., Mishra A., Mody K. H., Jha B., 2017. Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat, Gujarat. Front. Microbiol, 8: 2420–2420. https://doi.org/10.3389/fmicb.2017.02420 https://doi.org/10.3389/fmicb.2017.02420">

Ding L., Maier A., Fiebig H. H., Lin W. H., Hertweck C., 2011. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org. Biomol. Chem, 9(11): 4029–4031. https://doi.org/10.1039/c1ob05283g https://doi.org/10.1039/c1ob05283g">

Griffiths K., Aggarwal B. B., Singh R. B., Buttar H. S., Wilson D., De Meester F., 2016. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases (Basel, Switzerland), 4(3). https://doi.org/10.3390/ diseases4030028 https://doi.org/10.3390/ diseases4030028">

Janaki T., 2019. Anticancer activity of Streptomyces cacaoi subsp cacaoi M20 against breast cancer (MCF-7) cell lines. Int. J. Chemtech Res. http://dx.doi.org/ 10.20902/IJCTR.2019.120415 http://dx.doi.org/ 10.20902/IJCTR.2019.120415">

Jiang Z. K., Tuo L., Huang D. L., Osterman I. A., Tyurin A. P., Liu S. W., Lukyanov D. A., Sergiev P. V., Dontsova O. A., Korshun V. A., Li F. N., Sun C. H., 2018. Diversity, novelty, and antimicrobial activity of endophytic actinobacteria from mangrove plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front. Microbiol, 9: 868. https://doi.org/10.3389/fmicb.2018.00868 https://doi.org/10.3389/fmicb.2018.00868">

Kadaikunnan S., Rejiniemon T., Khaled J. M., Alharbi N. S., Mothana R., 2015. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann. Clin. Microbiol. Antimicrob, 14: 9−9. https://doi.org/ 10.1186/s12941-015-0069-1 https://doi.org/ 10.1186/s12941-015-0069-1">

Kaweewan I., Hemmi H., Komaki H., Kodani S., 2020. Isolation and structure determination of a new antibacterial peptide pentaminomycin C from Streptomyces cacaoi subsp. cacaoi. J. Antibiot, 73(4): 224–229. https://doi.org/ 10.1038/s41429-019-0272-y https://doi.org/ 10.1038/s41429-019-0272-y">

Khan N., Yılmaz S., Aksoy S., Uzel A., Tosun Ç., Kirmizibayrak P. B., Bedir E., 2019. Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chem. Biol. Interact, 307: 167–178. https://doi.org/10.1016/j.cbi. 2019.04.035 https://doi.org/10.1016/j.cbi. 2019.04.035">

Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular evolutionary genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol, 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054 https://doi.org/10.1093/molbev/msw054">

Lanoot B., Vancanneyt M., Cleenwerck I., Wang L., Li W., Liu Z., Swings J., 2002. The search for synonyms among Streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int. J. Syst. Evol. Microbiol, 52(Pt 3): 823–829. https://doi.org/ 10.1099/00207713-52-3-823 https://doi.org/ 10.1099/00207713-52-3-823">

Li F., Liu S., Lu Q., Zheng H., Osterman I. A., Lukyanov D. A., Sergiev P. V., Dontsova O. A., Liu S., Ye J., Huang D., Sun C., 2019. Studies on antibacterial activity and diversity of cultivable actinobacteria isolated from mangrove soil in Futian and Maoweihai of China. Evid. Based. Complement. Alternat. Med, 2019: 3476567. https://doi.org/10.1155/2019/ 3476567 https://doi.org/10.1155/2019/ 3476567">

Momtazi-Borojeni A. A., Behbahani M., Sadeghi-Aliabadi H., 2013. Antiproliferative activity and apoptosis induction of crude extract and fractions of Avicennia marina. Iran J. Basic. Med. Sci, 16(11): 1203–1208.

Musa Z., Ma J., Egamberdieva D., Abdelshafy Mohamad O. A., Abaydulla G., Liu Y., Li W.-J., Li L., 2020. Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus. Front. Microbiol: 11. https://doi.org/10.3389/ fmicb.2020.00191 https://doi.org/10.3389/ fmicb.2020.00191">

Okla M. K., Alatar A. A., Al-Amri S. S., Soufan W. H., Ahmad A., Abdel-Maksoud M. A., 2021. Antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) Vierh. Plants, 10(2): 252. https://doi.org/10.3390/plants10020252 https://doi.org/10.3390/plants10020252">

Pavan Kumar J. G. S., Gomathi A., Gothandam K. M., Vasconcelos V., 2018. Bioactivity assessment of Indian origin-mangrove actinobacteria against Candida albicans. Mar. Drugs, 16(2). https://doi.org/10.3390/md16020060 https://doi.org/10.3390/md16020060">

Petitjean A., Mathe E., Kato S., Ishioka C., Tavtigian S. V., Hainaut P., Olivier M., 2007. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat, 28(6): 622–629. https://doi.org/10.1002/humu.20495 https://doi.org/10.1002/humu.20495">

Quach N. T., Nguyen Q. H., Vu T. H. N., Le T. T. H., Ta T. T. T., Nguyen T. D., Van Doan T., Van Nguyen T., Dang T. T., Nguyen X. C., Chu H. H., Phi Q. T., 2021. Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Braz. J. Microbiol, 52(3): 1215–1224. https://doi.org/ 10.1007/s42770-021-00510-6 https://doi.org/ 10.1007/s42770-021-00510-6">

Rajoka M. S. R., Mehwish H. M., Hayat H. F., Hussain N., Sarwar S., Aslam H., Nadeem A., Shi J., 2019. Characterization, the antioxidant and antimicrobial activity of exopolysaccharide isolated from poultry origin Lactobacilli. Probiotics. Antimicrob. Proteins, 11(4): 1132−1142. doi: 10.1007/s12602-018-9494-8

Rani R., Arora S., Kaur J., Manhas R. K., 2018. Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC Complement. Altern. Med, 18(1): 82. https://doi.org/10.1186/s12906-018-2154-4 https://doi.org/10.1186/s12906-018-2154-4">

Salam N., Khieu T.-N., Liu M.-J., Vu T.-T., Chu-Ky S., Quach N.-T., Phi Q.-T., Narsing Rao M. P., Fontana A., Sarter S., Li W.-J., 2017. Endophytic actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. Biomed. Res. Int., 2017: 1308563. https://doi.org/ 10.1155/2017/1308563 https://doi.org/ 10.1155/2017/1308563">

Sangkanu S., Rukachaisirikul V., Suriyachadkun C., Phongpaichit S., 2017. Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microb. Pathog, 112: 303−312. https://doi.org/10.1016/ j.micpath.2017.10.010 https://doi.org/10.1016/ j.micpath.2017.10.010">

Ser H. L., Palanisamy U. D., Yin W. F., Abd Malek S. N., Chan K. G., Goh B. H., Lee L. H., 2015. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front. Microbiol, 6: 854. https://doi.org/10.3389/ fmicb.2015.00854 https://doi.org/10.3389/ fmicb.2015.00854">

Singh R., Dubey A. K., 2020. Isolation and characterization of a new endophytic actinobacterium Streptomyces californicus strain ADR1 as a promising source of anti-bacterial, anti-biofilm and antioxidant metabolites. Microorganisms, 8(6). https://doi.org/10.3390/microorganisms8060929 https://doi.org/10.3390/microorganisms8060929">

Taechowisan T., Peberdy J. F., Lumyong S., 2003. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol, 19(4): 381–385. https://doi.org/10.1023/A:1023901107182 https://doi.org/10.1023/A:1023901107182">

Tan L. T.-H., Chan K.-G., Chan C. K., Khan T. M., Lee L. H., Goh B. H., 2018. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. Biomed Res. Int, 2018: 4823126. https://doi.org/10.1155/2018/4823126 https://doi.org/10.1155/2018/4823126">

Tang Z., Qin Y., Chen W., Zhao Z., Lin W., Xiao Y., Chen H., Liu Y., Chen H., Bu T., Li Q., Cai Y., Yao H., Wan Y., 2021. Diversity, chemical constituents, and biological activities of endophytic fungi isolated from Ligusticum chuanxiong Hort. Front. Microbiol: 12. https://doi.org/ 10.3389/fmicb.2021.771000 https://doi.org/ 10.3389/fmicb.2021.771000">

Vu T. H. N., Nguyen Q. H., Dinh T. M. L., Quach N. T., Khieu T. N., Hoang H., Chu-Ky S., Vu T. T., Chu H. H., Lee J., Kang H., Li W. J., Phi Q. T., 2020. Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and, genetic features. J. Gen. Appl. Microbiol, 66(1): 24–31. https://doi.org/10.2323/ jgam.2019.04.004 https://doi.org/10.2323/ jgam.2019.04.004">

Wang F., Xu M., Li Q., Sattler I., Lin W., 2010. p-Aminoacetophenonic acids produced by a mangrove endophyte Streptomyces sp. (strain HK10552). Molecules (Basel, Switzerland), 15(4): 2782–2790. https://doi.org/10.3390/ molecules15042782 https://doi.org/10.3390/ molecules15042782">

Wang J. F., Liu S. S., Song Z. Q., Xu T. C., Liu C. S., Hou Y. G., Huang R., Wu S. H., 2020. Naturally occurring flavonoids and isoflavonoids and their microbial transformation: A review. Molecules (Basel, Switzerland), 25(21). doi: 10.3390/molecules25215112

Wang S.-S., Liu J.-M., Sun J., Sun Y.-F., Liu J.-N., Jia N., Fan B., Dai X.-F., 2019. Diversity of culture-independent bacteria and antimicrobial activity of culturable endophytic bacteria isolated from different Dendrobium stems. Sci. Rep, 9(1): 10389–10389. https://doi.org/10.1038/s41598-019-46863-9 https://doi.org/10.1038/s41598-019-46863-9">

Williams J. R., Yang R., Clifford J. L., Watson D., Campbell R., Getnet D., Kumar R., Hammamieh R., Jett M., 2019. Functional Heatmap: an automated and interactive pattern recognition tool to integrate time with multi-omics assays. BMC Bioinform, 20(1): 81. https://doi.org/ 10.1186/s12859-019-2657-0 https://doi.org/ 10.1186/s12859-019-2657-0">

Yang H., Deng J., Yuan Y., Fan D., Zhang Y., Zhang R., Han B., 2015. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: antioxidation and effect on oxidative stress. Curr. Microbiol, 70(2): 298–306. https://doi.org/ 10.1007/s00284-014-0717-2 https://doi.org/ 10.1007/s00284-014-0717-2">

Downloads

Published

28-09-2022

How to Cite

Quach, N. T., Bui, T. L., Vu, T. H. N., Nguyen, T. T. A., Chu, H. H., & Phi, Q. T. (2022). Endophytic actinomycetes from mangrove plant \(\textit{Avicennia marina}\) in Quang Ninh province, Vietnam: distribution, cytotoxicity, and antioxidant activities. Academia Journal of Biology, 44(3), 87–98. https://doi.org/10.15625/2615-9023/17492

Issue

Section

Articles