Provitamin a biofortification in maize through genetic engineering and marker-assisted selection

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0866-7160/v41n4.13804

Keywords:

β -carotene, biofortification, genetic engineering, maize (Zea mays L.), marker-assisted-selection, provitamin A.

Abstract

Maize is an important cereal in the global economy, which feeds one-third of the world’s population and is the third largest food crop after wheat and rice. Nutritional quality of most maize varieties is very low due to the lack of lysine and tryptophan and extremely low provitamin A carotenoids including α-carotene, β-carotene, and β-cryptoxanthin. Therefore, one of the solutions to improve nutritional value in maize is to improve provitamin A carotenoids contents. Many efforts have been made to produce maize plants with enhanced provitamin A carotenoids, especially, β -carotene. This article aims to review the research towards provitamin A biofortification through genetic engineering and marker-assisted selection. The published results and our recent achievements open the window for the improvement of provitamin A carotenoids in maize as well as the issues that need the further investigation.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al Babili S., Hartung W., Kleinig H., Beyer P., 1999. CPTA modulates levels of carotenogenic proteins and their mRNAs and affects carotenoid and ABA content as well as chromoplast structure in Narcissus pseudonarcissus flowers. Plant Biol., 1: 607–612.

Aluru M., Xu Y., Guo R., Wang Z., Li S., White W., Wang K., Rodermel S., 2008. Generation of transgenic maize with enhanced pro-vitamin A content. J. Exp. Bot., 59: 3551–3562.

Babu R, Rojas N. P., Gao S., Yan J., Pixley K., 2012. Validation of the effects of molecular marker polymorphisms in LCYE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor. Appl. Genet., 126(2): 389–399.

Bai C., Rivera S., Medina V., Alves R., Vilaprinio E., Sorribas A., Canela R., Capell T., Sandmann G., Christou P., Zhu C., 2014. An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation. Plant J., 77(3): 464–475.

Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V., 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the crispr/cas system. Plant Methods 9: 39. https:// doi.org/10.1186/1746-4811-9-39.

Berman J., Zorrilla-López U., Medina V., Farré G., Sandmann G., Capell T., Christou P., Zhu C., 2017. The Arabidopsis ORANGE (AtOR) gene promotes carotenoid accumulation in transgenic maize hybrids derived from parental lines with limited carotenoid pools. Plant Cell Rep. https:// doi.org/ 10.1007/s00299-017-2126-z.

Bouis H. E., Welch R. M., 2010. Biofortification - a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci., 50: S20–S32.

Bouis H. E., Saltzman A., 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12: 49–58.

Buckner B., Kelson T. L., Robertson D. S., 1990. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell, 2: 867–876.

Buckner B., Miguel P. S., Janickbuckner D., Bennetzen J. L., 1996. The Y1 gene of maize codes for phytoene synthase. Genetics, 143: 479–488.

Burt A. J., Grainger C. M., Smid M. P., Shelp B. J., Lee E. A., 2011. Allele mining of exotic maize germplasm to enhance macular carotenoids. Crop Sci., 51: 991–1004.

Chen Y., Li F., Wurtzel E. T., 2010. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol., 153: 66–79.

Cho K. S., Han E. H., Kwak S. S., Cho J. H., Im J. S., Hong S. Y., Sohn H. B., Kim Y. H., Lee S. W., 2016. Expressing the sweetpotato orange gene in transgenic potato improves drought tolerance and marketable tuber production. C R Biol., 339: 207–213.

Combs G. F., 2008. The Vitamins: Fundamental Aspects in Nutrition and Health (3rd ed.). Burlington: Elsevier Academic Press.

Davis C., Jing H., Howe J. A., Rocheford T., Tanumihardjo S. A., 2008. β-Cryptoxanthin from supplements or carotenoid enhanced maize maintains liver vitamin A in Mongolian gerbils (Meriones unguiculatus) better than or equal to β-carotene supplements. Br. J. Nutr., 100: 1–8.

De Steur H., Mehta S., Gellynck X., Finkelstein J. L., 2017. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations. Curr. Opin. Biotechnol., 44:181–188.

Diretto G., Al-Babili S., Tavazza R., Papacchioli V., Beyer P., Giuliano G., 2007. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One, 2: e350

Diretto G., Tavazza R., Welsch R., Pizzichini D., Mourgues F., Papacchioli V., Beyer P., Giuliano G., 2006. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol., 6: 13.

Farre G., Rivera S. M., Alves R., Vilaprinyo E., Sorribas A., Canela R., Naqvi S., Sandmann G., Capell T., Zhu C., Christou P., 2013. Targeted transcriptomics and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that can be addressed by multigene engineering. Plant J., 75: 441–455.

Farre G., Perez-Fons L., Decourcelle M., Breitenbach J., Hem S., Zhu C., Capell T., Christou P., Fraser P.D., Sandmann G., 2016. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Res., 25: 477–489.

Food and Agriculture Organization/World Health Organization, 1967. Requirement of Vitamin A, Thiamine, Riboflavin and Niacin. FAO Food and Nutrition Series B. Rome.

Goswami R., Zunjare R. U., Khan S., Baveja A., Muthusamy V., Hossain F., 2019. Marker‐assisted introgression of rare allele of β‐carotene hydroxylase (crtRB1) gene into elite quality protein maize inbred for combining high lysine, tryptophan and provitamin A in maize. Plant Breed., 138:174–183. https://doi.org/10.1111/pbr.12676.

Goo Y. M., Han E. H., Jeong J. C., Kwak S. S., Yu J., Kim Y. H., Ahn M. J., Lee S. W., 2015. Overexpression of the sweet potato IbOr gene results in the increased accumulation of carotenoids and confers tolerance to environmental stresses in transgenic potato. Comptes Rendus Biologies, 338(1): 12–20

Halilu A. D., Ado S. G., Aba D. A., Usman I. S., 2016. Genetics of carotenoids for provitamin A biofortification in tropical-adapted maize. The Crop J., 4(4): 313–322.

Harjes C. E., Rocheford T. R., Bai L., Brutnell T. P., Kandianis C. B., Sowinski S. G., Buckler E. S., 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319: 330–333.

Howitt C. A., Pogson B. J., 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ., 29:435–445.

Huang Z., Liu Y., Qi G., Brand D., Zheng S.G., 2018. Role of vitamin A in the immune system. J. Clin. Med., 7(9): 258

Institute of Medicine (US) Panel on Micronutrients, 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. (free download): National Academy Press. https:// doi.org/10.17226/10026. ISBN 978-0-309-07279-3. PMID 25057538.

Kim S. H., Ahn Y. O., Ahn M. J., Jeong J. C., Lee H. S. S., Kwak S. S., 2013. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweet potato cultures. Plant Physiol. Biochemist., 70: 445–454.

Kurilich A. C., Juvik J. A., 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agric. Food. Chem., 47: 1948–55.

Li L., Yang Y., Xu Q., Owsiany K., Welsch R., Chitchumroonchokchai C., Lu S., Van Eck J., Deng X. X., Failla M., Thannhauser T. W., 2012. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol. Plant., 5(2): 339–352.

Li Z. H., Matthews P. D., Burr B., Wurtzel E. T., 1996. Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol. Biol., 30: 269–279.

Lopez A. B., Van Eck J., Conlin B. J., Paolillo D. J., O'Neill J., Li L., 2008. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot., 59 (2): 213–223.

Lu S., Eck Van J., Zhou X., Lopez A. B., O’Halloran D. M., Cosman K. M., Conlin B. J., Paolillo D. J., Garvin D. F., Vrebalov J., Kochian L. V., Kupper H., Earle E. D., Cao J., Li L., 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain containing protein that mediates high levels of beta-carotene accumulation. Plant Cell, 18: 3594–3605.

Matthews P. D., Wurtzel E. T., 2007. Food colorants: Chemical and functional properties. Boca Raton, FL: CRC. pp: 347–398.

Menkir A., Palacios-Rojas N., Alamu O., Dias Paes M. C., Dhliwayo T., Maziya-Dixon B., Mengesha W., Ndhlela T., Oliveira Guimarães PE., Pixley K., Torbert R., 2018. Vitamin A-Biofortifed Maize: Exploiting Native Genetic Variation for Nutrient Enrichment. Science Brief: Biofortifcation No. 2 (February 2018). CIMMYT, IITA, EMBRAPA, HarvestPlus, and Crop Trust. Bonn, Germany.

Messias R. S., Galli V., dos Anjos e Silva S. D., Rombaldi C. V., 2014. Carotenoid biosynthetic and catabolic pathways: Gene expression and carotenoid content in grains of maize landraces. Nutrients, 6: 546–563

Meyers K. J., Mares J. A., Igo R. P., Truitt B., Liu Z., Millen A. E., Klein M., Johnson E. J., Engelman C. D., Karki C. K., Blodi B., Gehrs K., Tinker L., Wallace R., Robinson J., LeBlanc E. S., Sarto G., Bernstein P. S., SanGiovanni J. P., Iyengar S. K., 2014. Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in age-related eye disease study (CAREDS). Invest Ophthalmol Vis Sci., 55(1): 587–599.

Muzhingi T., Yeum K. J., Rusell R. M., Johnson E., Qin J., Tang G., 2008. Determination of carotenoids in yellow maize, the effect of saponification and food preparation. Int. J. Vitam. Nutr. Res., 78(3): 112–120.

Muthusamy V., Hossain F., Thirunavukkarasu N., Choudhary M., Saha S., Bhat J. S., Prasanna B.M., Gupta H.S., 2014. Development of β-Carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS ONE, 9(12): e113583. https:// doi.org/10.1371/ journal.pone. 0113583.

Muthusamy V, Hossain F., Thirunavukkarasu N., Saha S., Agrawal P. K., Guleria S. K., Gupta H. S., 2015a. Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic Maize (Zea mays L.) Inbreds. Cereal Research Communications https:// doi.org/10.1556/0806.43.2015.012

Muthusamy V., Hossain F., Thirunavukkarasu N., Saha S., Gupta H.S., 2015b. Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbred and their utilization in β-carotene enrichment programme. Cogent Food & Agriculture, 1: 1033141.

National Institute of Health. Office of dietary supplements fact sheet: Vitamin A.

Naqvi S., Zhu C., Farre G., Ramessar K., Bassie L., Breitenbach J., Perez Conesa D., Ros G., Sandmann G., Capell T., Christou P., 2009. Transgenic multivitamin maize through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci., USA, 106: 7762–7767.

Neilson J. A., Durnford D. G., 2010. Evolutionary distribution of light-harvesting complex-like proteins in photosynthetic eukaryotes. Genome, 53: 68–78.

Ortiz-Monasterio J. I., Palacios-Rojas N., Meng E., Pixley K., Trethowan R., Penaet R. J., 2007. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal. Sci., 35 (46): 293–307.

Park S. C., Kim S.H., Park S., Lee H. U., Lee J. S., Park W. S., Ahn M. J., Kim Y. H., Jeong J. C., Lee H. S., Kwak S. S., 2015. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiol. Biochem., 86: 82–90.

Paul J. Y., Khanna H., Kleidon J., Hoang P., Geijskes J., Daniells J., Zaplin E., Rosenberg Y., James A., Mlalazi B., Deo P., Arinaitwwe G., Namanya P., Becker D., Tindamanyire J., Tushemereirwe W., Harding R., Dale J., 2017. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol. J., https:// doi.org//10.1111/pbi.12650.

Pixley K., Palacios N., Babu R., Mutale R., Surles R., Simpungwe E., 2013. Biofortifcation of maize with provitamin a carotenoids. In: Carotenoids and Human Health. Tanumihardjo, Sherry A. (Ed.) Humana Press. Chapter 17: 271–292.

Pons E., Alquezar B., Rodriguez A., Martorell P., Genoves S., Ramon D., Rodrigo M.J., Zacarias L., Pena L., 2014. Metabolic engineering of beta-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol. J., 12: 17–27.

Sagare D. B., Shetti P., Surender M., Reddy S. S., 2019. Marker-assisted backcross breeding for enhancing β-carotene of QPM inbred. Mol. Breed., 31. https:// doi.org/10.1007/s11032-019-0939-x.

Seo M., Koshiba T., 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci., 7(1): 41–48.

Suwarno W.B., Pixley K.V., Palacios-Rojas N., Kaeppler S.M., Babu R., 2014. Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop. Sci., 54: 14. https:// doi.org/10.2135/cropsci2013.02.0096.

Romer S., Lubeck J., Kauder F., Steiger S., Adomat C., Sandmann G., 2002. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng., 4: 263–272.

Ross D. A., 1998. Vitamin A and public health: Challenges for the next decade. Proc. Nutrition. Society, 57: 159–165.

Semba R. D., 1994. Vitamin A, immunity, and infection. Clin. Infect. Dis.. 19(3): 489–499.

Semba R. D., 2009. The role of vitamin A and related retinoid in immune function. Nutrition Review, 56(1): s38–s48.

Tang G., 2010. Bioconversion of dietary provitamin A carotenoids to vitamin A in

humans. Am. J. Clin. Nutr., 91(suppl): 1468S–73S.

Thirusendura Selvi D., Senthil N., Yuvaraj A., John Joel A., Mahalingam A., Nagarajan P., Vellaikumar S., Srimathi P., Raveendran M., Nepolean T., 2014. Assessment of crtRB1 polymorphism associated with increased β-carotene content in maize (Zea mays L.) Seeds. Food Biotechnol., 28(1): 41–49.

Tran T. L., Ho T. H., Nguyen D. T., 2017. Overexpression of the IbOr gene from sweet potato (Ipomea batatas ‘Hoang Long’) in maize increases total carotenoid and β-carotene contents. Turk. J. Biol., 41: 1003–1010.

Tzuri G., Zhou X., Chayut N., Yuan H., Portnoy V., Meir A., Sa’ar U., Baumkoler F., Mazourek M., Lewinsohn E., Fei Z., Schaffer A. A., Li L., Burger J., Katzir N., Tadmor Y., 2015. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J., 82: 267–279.

United States Institute of Medicine, 2001. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: National Academy Press.

US National Institutes of Health, 2016. Vitamin A. MedlinePlus, National Library of Medicine.

Vallabhaneni R., Wurtzel E. T., 2009. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol., 150: 562–572.

Vignesh M., Hossain F., Nepolean T., Saha S., Agrawal P. K., Guleria S. K., Prasanna B. M., Gupta H. S., 2012. Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J. Genet., 72: 189–194.

Vishnevetsky M., Ovadis M., Vainstein A., 1999. Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci., 4: 232–235.

Wang C., Zeng J., Li Y., Hu W., Chen L., Miao Y., Deng P., Yuan C., Ma C., Chen X., Zang M., Wang Q., Li K., Chang J., Wang Y., Yang G., He G., 2014. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J. Exp. Bot., 65: 2545–2556.

Wang Z., Ke Q., Kim M. D., Kim S. H., Ji C. Y., Jeong J. C., Lee H. S., Park W. S., Ahn M. J., Li H., Xu B., Deng X., Lee S. H., Lim Y. P., Kwak S. S., 2015. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance. PLoS ONE, 10: e0126050.

Welsch R., Arango J., Bar C., Salazar B., Al-Babili S., Beltran J., Chavarriaga P., Ceballos H., Tohme J., Beyer P., 2010. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell, 22: 3348–3356.

World Health Organization, 2010. World health statistics. Geneva, Switzerland: WHO.

Wurtzel T. E., Cuttriss A., Vallabhaneni R., 2012. Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Fronties in Plant Sci., 3: 1–12. https:// doi.org/ 0.3389/fpls.2012.00029.

Seo M., Koshiba T., 2002. Complex regulation of ABA biosynthesis in plants. Trends in Plant Sci., 7: 41–48

Yan J. B., Kandianis C. B., Harjes C. E., Bai L., Kim E. H., Yang X. H., Skinner D. J., Fu Z. Y., Mitchell S., Li Q., Salas Fernandez M. G., Zaharieva M., Babu R., Fu Y., Palacios N., Li J. S., DellaPenna D., Brutnell T., Buckler E. S., Warburton M. L., Rocheford T., 2010. Rare genetic variation at Zea mays crtRB1 increases b-carotene in maize grain. Nature Genetics, 42: 322–327.

Ye X., Al-Babili S., Kloti A., Zhang J., Lucca P., Beyer P., Potrykus I., 2000. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287: 303–305.

Zanga D., Capell T., Slafer G. A., Christou P., Savin R., 2016. A carotenogenic mini pathway introduced into white maize does not affect development or agronomic performance. Scientific Reports, 6: 1–12

Zeng J., Wang X., Miao Y., Wang C., Zang M., Chen X., Li M., Li X., Wang Q., Li K., Chang J., Wang Y., Yang G., He G. 2015. Metabolic engineering of wheat provitamin A by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHyd). J. Agric. Food. Chem., 63: 9083–9092.

Zhu C. F., Naqvi S., Breitenbach J., Sandmann G., Christou P., Capell T., 2008. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc. Nat. Acad. Sci. USA, 105: 18232–18237.

Zhou X., Van Eck J., Li L., 2008. Use of the cauliflower Or gene for improving crop nutritional quality. Biotech. Ann. Rev., 14: 171–190.

Zhou X., Welsch R., Yanga Y., Álvarez D., Riediger M., Yuana H., Fish T., Liu J.,

Thannhauser T.W., Li L., 2015. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc. Nat. Acad. Sci. USA, 12(11): 3558–3563.

Zunjare R. U., Hossain F., Muthusamy V., Baveja A., Chauhan H. S., Bhat J. S., Thirunavukkarasu N., Saha S., Gupta H. S., 2018. Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and Opaque2 genes. Front Plant Sci., 9: 178. https:// doi.org/10.3389/fpls.2018.00178.

Downloads

Published

31-12-2019

How to Cite

Thanh, N. D. (2019). Provitamin a biofortification in maize through genetic engineering and marker-assisted selection. Academia Journal of Biology, 41(4). https://doi.org/10.15625/0866-7160/v41n4.13804

Issue

Section

Articles