PHYLOGENETIC RELATIONSHIPS OF *Quercus* SPECIES (FAGACEAE) IN VIETNAM BASED ON MULTIPLEXED INTER SIMPLE SEQUENCE REPEAT GENOTYPING BY SEQUENCING

Hoang Thi Binh¹, Tetsukazu Yahara², Yoshihisa Suyama³, Shuichiro Tagane⁴, Nguyen Van Ngoc^{1,*}

 ¹Faculty of Biology, Dalat University, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
²Kyushu Open University, 744 Motooka, Fukuoka, 819–0395, Japan
³Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
⁴The Kagoshima University Museum, Kagoshima University, 1-21-30 Korimoto, Kagoshima, 890-0065, Japan

Received 21 December 2023; accepted 20 March 2024

ABSTRACT

Quercus is the largest genus of the family Fagaceae in the world and the second-largest in Vietnam, with approximately 50 species. However, the phylogeny study of the Quercus genus in Vietnam has yet to be thoroughly explored. In this study, we utilize the genome-wide single-nucleotide polymorphisms (SNPs) data obtained through Multiplexed Inter Simple Sequence Repeat Genotyping by sequencing (MIG-seq) to explore the phylogenetic relationships among Quercus species in Vietnam. The results of this study reveal that all Quercus species in Vietnam belong to subgenus Cerris and the phylogenetic analysis strongly supports the recognition of two infrageneric sections: Quercus and Ilex section for the Vietnamese Quercus. These results also confirm that the monophyly of Quercus in Vietnam is strongly supported by both morphological and molecular data. The results of this study also align entirely with previous research, indicating that Quercus species in Asia fall under the subgenus Cerris, comprising two sections: section Ilex and section Cyclobalanopsis.

Keywords: Flora, MIG-seq, NGS, Phylogeny, Oak.

Citation: Hoang Thi Binh, Tetsukazu Yahara, Yoshihisa Suyama, Shuichiro Tagane, Nguyen Van Ngoc, 2024. Phylogenetic relationships of *Quercus* species (Fagaceae) in Vietnam based on multiplexed inter simple sequence repeat genotyping by sequencing. *Academia Journal of Biology*, 46(1): 99–108. https://doi.org/10.15625/2615-9023/19721

^{*}*Corresponding author email*: ngocnv@dlu.edu.vn

INTRODUCTION

Quercus L. (Oak) is the biggest genus in the family Fagaceae and contains more than 500 species worldwide. Species diversity is highest in the Southeast Asia tropical montane forests and temperate deciduous forests in East Asia, Europe, and North and desert scrubs in America the Mediterranean (Nixon, 1993; Hubert et al., 2014; Valencia-A et al., 2016). Quercus species are dominant trees in evergreen broad-leaved forests and play a significant economic, timber, and ecological role globally (Nixon, 2006; Hubert et al., 2014).

Until now, numerous studies on the phylogenetic relationships between species of the genus Quercus have been conducted worldwide. Of which, the infrageneric classification has been carried out by two nuclear-encoded molecular markers, namely, the widely utilized ITS region of the 35S rDNA cistron and a 2415 bp long fragment of the CRABS CLAW gene (CRC). Recognition of five or six major groups has been achieved through these markers, as documented by Manos et al. (2001), Oh & Manos (2008), and Denk & Grimm (2010). These identified groups partially coincide with the consensus reached by the morphological classification systems proposed by Camus (1936–1954), Schwarz (1936), and Menitsky (2005), as reviewed by Denk & Grimm (2010). In recent times, various gene markers (Hubert et al., 2014; Simeone et al., 2016), RAD-seq (Hipp et al., 2014; Cavender-Bares et al., 2015; Fitz-Gibbon et al., 2017; McVay et al., 2017) have proven effective for uncovering phylogenetic relationships within the genus Quercus and among closely related species. Until now, previous phylogenetic studies on Quercus have rarely included species distributed in Vietnam, particularly the endemic ones.

Vietnam is one of the biodiversity hotspots in the world with approximately 50 species of *Quercus*. The previous studies of this genus mainly focused on the taxonomic work, utilizing both morphological and molecular evidence (Camus, 1936–1954; Ho, 2003; Ban, 2005; Li et al., 2016; Binh et al., 2018a, b, c; Binh et al., 2021., Ngoc et al., 2022a, b). Those studies confirmed the species diversity of the Vietnamese Oak. In recent years, researchers have also used both DNA barcodes of classic and next-generation sequences to clarify the taxonomic status and relationships among the closely related species, as well as describe new taxa in Vietnam (Binh et al., 2018a; Ngoc et al., 2022a, b).

Multiplexed ISSR Genotyping-bysequencing (MIG-seq) is one method for building next-generation sequencing libraries with PCR-based procedures without restriction enzyme digestion steps. MIG-seq is a powerful, simple, quick, cost-effective genotyping procedure, and can be widely applicable to a wide range of DNA quality and quantities (Suyama & Matsuki, 2015; Binh et al., 2018a; Ngoc et al., 2021; Ngoc et al., 2022).

In this study, we utilize the genome-wide SNPs data obtained through MIG-seq to investigate the phylogenetic relationships among *Quercus* species in Vietnam.

MATERIALS AND METHODS

Taxon sampling and morphological identification

In this study, we used a part of the sample from our previous studies (Binh et al., 2018a, b, c; Binh et al., 2021; Ngoc et al., 2022a, b) and 39 new accessions from this study. A total of 108 samples representing 50 of the Vietnamese Quercus species were included in the analyses. Species identifications (Table 1) were made based on carefully comparing their morphological traits with the available type specimens or authentic specimens of all Quercus species described from Vietnam, China, Cambodia, Laos, and Thailand. We accomplished this by visiting the herbaria HN, P, VNM, FU, and DLU, and utilizing digital images of specimens on JSTOR Global Plants (https://plants.jstor.org/) and the websites of various herbaria. Additionally, we reviewed the original description of each species. Additionally, seven accessions of six species of Lithocarpus genus were used as outgroups longipedice including Lithocarpus obovatifolius, Lithocarpus Lithocarpus vinhensis, Lithocarpus hongiaoen.

longipedicellatus, Lithocarpus dahuoaiensis, Lithocarpus vuquangensis, and Lithocarpus hongiaoensis.

Species	Specimens ID	Localities
Quercus poilanei	QC34, QC44, QC77, QC78, V1895,V339,	Bidoup, Nui Ba NP, Lam Dong province; Hon Ba NR, Khanh Hoa
	V703, V1990, V2043 V2907, V2986, V3113	province; Bach Ma NP, Thua Thien Hue province; Ba Na NR, Da Nang City
Quercus braianensis	V3219, V4034, QC33, QC46, QC47,	Bidoup, Nui Ba NP, Lam Dong province; Ngoc Linh NR, Kon
	QC48,QC89, V6077	Tum province
Quercus kerrii	QC76	Ngoc Linh NR, Kon Tum province
Quercus helferiana	QC64, QC65, V3244	Bidoup, Nui Ba NP, Lam Dong province
Quercus austrocochinchinensis	QC83, QC86	Son Tra, Da Nang City
Quercus bidoupensis	<i>QC29, QC72, QC30,</i> <i>V3202, V10069</i>	Bidoup – Nui Ba NP, Lam Dong province
Quercus sp1.	V6618	Ngoc Linh NR, Kon Tum province
Quercus sp2.	V6597	Ngoc Linh NR, Kon Tum province
Quercus chapaensis	V5101	Hoang Lien NR, Lao Cai province
Quercus sessilifolia	V5112, V5047	Hoang Lien NR, Lao Cai province
Quercus lineata	V6028, V7502, V7499	Cuc Phuong NP, Ninh Binh province
Quercus augustini	QC166	Ba Na NR, Da Nang City
~ ~	V4365, V9824,	Bidoup, Nui Ba NP, Lam Dong
Quercus sp3.	V10170	province
Quercus annulata	V4730, QC162	Hoang Lien NP, Lao Cai province
Quercus djiringensis	V4309, V5537, V5538	Bidoup, Nui Ba NP, Lam Dong province
Quercus chevalieri	V6448	Ngoc Linh NR, Kon Tum province
Quercus macrocalyx	QC110, QC123, QC149, V5776, V6457	Bach Ma NP, Thua Thien Hue province; Vu Quang NP, Ha Tinh province; Ngoc Linh NR, Kon Tum province
Quercus auricoma	V3135	Son Tra, Da Nang City
Quercus sontraensis	QC201, V3138, V6965	Son Tra, Da Nang City
Quercus baniensis	V3089, V6922	Ba Na NR, Da Nang City
	V3042	Hai Van Pass, Da Nang City
Quercus sp4.		
Quercus bella	QC07, V6031, V6038, V6044	Ba Vi NP, Ha Noi Capital
		Ba Vi NP, Ha Noi Capital Ba Vi NP, Ha Noi Capital
Quercus bella	V6044	

Table 1. List of voucher specimens that were used in this study

Species	Specimens ID	Localities
Quercus platycalyx	V6065	Vu Quang NP, Ha Tinh province
Quercus xuanlienensis	QC10	Xuan Lien NR, Thanh Hoa province
Quercus sp5.	V5724, V5927	Vu Quang NP, Ha Tinh province
Quercus edithiae	QC109	Vu Quang NP, Ha Tinh province
Quercus bambusifolia	QC99, QC101, QC102, V3587	Vu Quang NP, Ha Tinh province
Quercus thorelii	QC106	Vu Quang NP, Ha Tinh province
Quercus xanthoclada	V3581, V3718	Vu Quang NP, Ha Tinh province
Quercus langbianensis	QC26, QC49, QC58, QC71, V3962, V4165, V4166, V4398, V4465, V10061, V10074	Bidoup, Nui Ba NP, Lam Dong province
Quercus donnaiensis	V3208	Cong Troi, Lam Dong province
Quercus sp6.	V6136	Ngoc Linh NR, Kon Tum province
Quercus baolamensis	QC87	B40 Pass, Lam Dong province
Quercus honbaensis	V744, V1200, V1378, V1548, V1662	Hon Ba NR, Khanh Hoa province
Quercus blaoensis	V1366	Hon Ba NR, Khanh Hoa province
Quercus sp7.	V4285	Bidoup, Nui Ba NP, Lam Dong province
Quercus setulosa	QC12	Duc Trong, Lam Dong province
Quercus trungkhanhensis	V6066, V7501	Cao Vit Gibbon, Cao Bang province
Quercus lanata	QC35, QC36	Da Lat, Lam Dong province
Lithocarpus obovatifolius	V2983	Bach Ma NP, Thua Thien Hue province
Lithocarpus vinhensis	V3787	Vu Quang NP, Ha Tinh province
Lithocarpus longipedicellatus	V3813	Vu Quang NP, Ha Tinh province
Lithocarpus dahuoaiensis	V3194, V5404	Chuoi Pass, Dahuoai, Lam Dong province
Lithocarpus vuquangensis	V5743	Vu Quang NP, Ha Tinh province
Lithocarpus hongiaoensis	V3235	Bidoup, Nui Ba NP, Lam Dong province

Notes: NP: National Park; NR: Nature Reserve.

DNA extraction, PCR, and sequencing

The DNA from each sample was extracted using the cetyltrimethylammonium bromide (CTAB) method (Doyle & Doyle, 1987) from silica gel-dried leaves. For this study, we followed the modifications outlined by Toyama et al. (2015). Initially, the dried leaf material was finely powdered using the QIAGEN Tissue Lyser and subsequently subjected to three washes in a 1 mL buffer containing 0.1 M HEPES (pH 8.0), 2% mercapto-ethanol, 1% PVP, and 0.05 M ascorbic acid. To assess the quality and quantity of the extracted DNA, we employed a NanoDrop (Thermo Scientific) test.

The procedures of MIG-seq include two PCR reactions following the protocol of Suyama & Matsuki (2015) with minor modifications as described in the previously published literature (Suyama et al., 2021; Binh et al., 2018a; Ngoc et al., 2021). The ISSR regions from genomic DNA were amplified with MIG-seq primer set-1 (Appendix) during the 1st PCR reaction with the given condition as described in Suyama Matsuki (2015). The product of 1st PCR was checked by a Microchip Electrophoresis System (MultiNA, Shimadzu) with the DNA-2500 Reagent Kit (Shimadzu). Before running the 2nd PCR reaction, the 1st PCR product was diluted 50 times with deionized water. Then, those products were used as the template for amplifying with indexed primer according to the given protocol that had been previously published (Suyama & Matsuki, 2015; Suyama et al., 2021; Ngoc et al., 2021). In the next step, all PCR products were pooled as a single mixture library for purification and size selection. Finally, approximately 10 pM of libraries were used for sequencing with Illumina MiSeq Sequencer after measuring the concentration.

Phylogenetic analyses

Before constructing the phylogenetic tree, the Trimmomatic 0.39 and Stacks 2.41 software (Bolger et al., 2014; Catchen et al., 2013; Rochette et al., 2019) were used for quality control of MIG-seq data and de novo SNP discovery, respectively. Then, the genome-wide SNPs data set was used to infer the maximum likelihood phylogenetic tree using RAxML version 8.2.4 (Stamatakis, 2014) with the GTR + G nucleotide determined substitution model as by jMrModeltest 2.1.10 (Darriba et al., 2012). To evaluate the topological reliability of the phylogenetic tree, 1000 bootstrap replicates were performed.

RESULTS AND DISCUSSION

The maximum likelihood (ML) tree based on MIG-seq genome-wide SNPs is highly resolved and reveals two main clades, including the outgroup with seven accessions of the *Lithocarpus* genus and 108 accessions of the *Quercus* genus. All of *Quercus* samples belong to subgenus *Cerris* and the monophyly of *Quercus* is strongly supported by the highest bootstrap values (100%) (Fig. 1).

The phylogenetic tree of the genus *Quercus* in Vietnam is divided into two major clades, corresponding to the *Ilex* section and the *Cyclobalanopsis* section. A 100% bootstrap value supports both of those sections. Section *Ilex* includes two samples of *Quercus lanata*, two samples of *Quercus setulosa*. While section *Cyclobalanopsis* is divided into three groups: *Cyclo.* 1, *Cyclo.* 2, and *Cyclo.* 3. These groups are supported by an absolute bootstrap value of 100% (Fig. 1).

The group *Cyclo.* 1 consists of only one accession of *Quercus* (V4285), and the phylogenetic tree showed that it is isolated from the rest of section *Cyclobalanopsis* (Fig. 1). The morphological characteristics of this accession do not resemble any previously described species of the section *Cyclobalanopsis*.

The group Cyclo. 2 comprising 76 accessions of the section Cyclobalanopsis and was supported by the highest bootstrap value (100%). Both morphological and molecular data strongly support the monophyly of this group. In the phylogenetic tree, this group showed the highest level of bootstrap value of 100% and included 34 spp. of the section Cyclobalanopsis and those identified are Q. honbaensis, Q. blaoensis, Q. baolamensis, Quercus sp.6, Q. dongnaiensis, О. langbianensis, Q. xanhthoclada, Q. thoreilii, Q. bambusifolia, Quercus sp. 5, Q. edithiae, xuanlienensis, platycalyx, Q. Q. Q. chrysocalyx, Q. quangtriensis, Q. disciformis, Q. bella, Quercus sp. 4, Q. baniensis, Q. sontraensis, Q. auricoma, Q. macrocalys, Q. chevalieri, Q. djiringensis, Q. annulata, Quercus sp.3, Q. augustini, Q. lineata, Q. sessilifolia, Q. chapaensis, Quercus sp. 2, Quercus sp.1, and Q. bidoupensis. In this group, nine samples do not resemble any previously known species of the section Cyclobalanopsis as well as the genus *Quercus*, but there is not enough evidence to confirm their identification. In this study, based on morphological observation we stated those samples as *Quercus* sp.1 (V6618), *Quercus* sp.2 (V6597), *Quercus* sp.3 (V9284, V4365, V10170), *Quercus* sp.4 (V3042), *Quercus* sp.5 (V5724, V5927), and *Quercus* sp.6 (V6136).

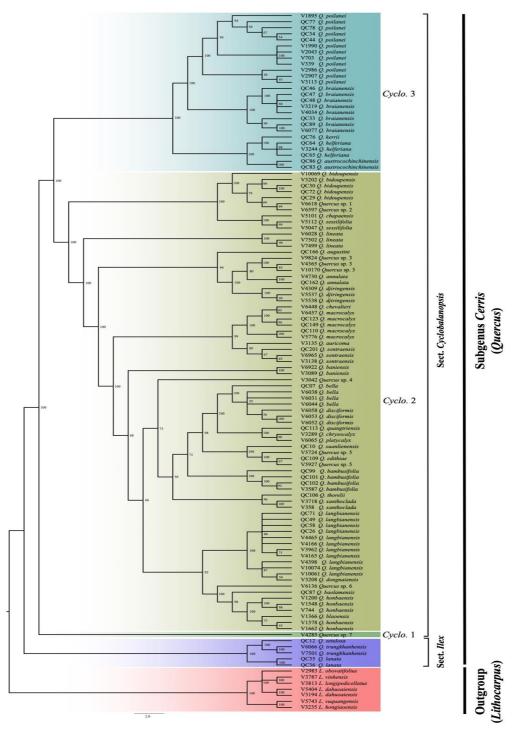


Figure 1. Phylogenetic tree of Quercus species in Vietnam based on data from MIG-seq

The group Cyclo. 3 comprised 25 accessions of the section Cyclobalanopsis and was supported by the absolute bootstrap value (100%). Based on morphological observation and its monophyly was confirmed by the high bootstrap value we found that this group included species. six Ouercus autrocochinchinensis (OC86, OC83) is sister to Q. helferiana (QC65, V3244, QC64) and Q. kerri (QC76) in a clade that was supported by a 100% bootstrap value. The monophyly of Q. braianensis was supported and confirmed by the highest bootstrap value (100%). A total of 12 accessions were clustered in a monophyly clade that is supported by 100% bootstrap value, those are morphologically identical and were identified as O. poilanei.

Morphologically, Quercus species in Vietnam subgenus belong to Cerris, consistent with the molecular research results of Hubert et al. (2014) and Yang et al. (2021). The results of the phylogenetic relationship analysis in this study also indicate that Quercus species in Vietnam belong to subgenus Cerris, encompassing two sections: section Ilex and section Cyclobalanopsis. These findings align entirely with the phylogenetic studies of Hubert et al. (2014) and Yang et al. (2021), as they posit that Quercus species in Asia fall under subgenus Cerris, comprising two sections: section Ilex and section Cyclobalanopsis.

In this study, ten samples do not resemble any previously known species of the section *Cyclobalanopsis* as well as the genus *Quercus*, but there is not enough evidence to confirm their identification. In this study, based on morphological observation we stated those samples as *Quercus* sp.1 (V6618), *Quercus* sp.2 (V6597), *Quercus* sp.3 (V9284, V4365, V10170), *Quercus* sp.4 (V3042), *Quercus* sp.5 (V5724, V5927), *Quercus* sp.6 (V6136), and *Quercus* sp. 7 (V4285) those are nested in the section *Cyclobalanopsis*.

CONCLUSION

The phylogenetic tree based on SNP data from Multiplexed ISSR Genotyping by Sequencing (MIG-seq) supports the reconstruction of a robust topology of the phylogenetic relationship between *Quercus* species in Vietnam.

Based on the results of the phylogenetic relationship analysis of this study we conclude that there is only one subgenus *Cerris* of the genus *Quercus* in Vietnam and it comprises two sections (Sect. *Ilex* and Sect. *Cyclobalanopsis*).

The results from this study reveal that section *Ilex* in Vietnam comprises three species *Q. lanata, Q. trungkhanhensis,* and *Q. setulosa* while the section *Cyclobalanopsis* includes at least 41 spp.

The findings of this investigation are consistent with prior research, affirming that *Quercus* species in Asia belong to the subgenus *Cerris*, which comprises two sections: section *Ilex* and section *Cyclobalanopsis*.

Acknowledgements: To make this research possible, we would like to thank the colleagues who helped us with the survey in the field and the laboratory work. We also would like to extend our appreciation to the curators and staff of the following herbaria: DLU, FU, HN, K, P, and VNM for making their collections accessible. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.03-2019.19.

REFERENCES

- Ban N. T., 2005. Vietnam plant checklist, Vol. 2. Agriculture Publishers, Hanoi National University (In Vietnamese).
- Binh H. T., Ngoc N. V., Bon T. N., Tagane S., Yahara T., 2018a. A new species and two new records of *Quercus* (Fagaceae) from northern Vietnam. *PhytoKeys*, 92: 1–15. https://doi.org/10.3897/phytokeys.92.21831
- Binh H. T., Ngoc N. V., Tagane S., Toyama H., Mase K., Mitsuyuki C., Strijk J. S., Suyama Y., Yahara T., 2018b. A taxonomic study of *Quercus langbianensis* complex based on morphology, and DNA barcodes of classic

and next-generation sequences. *PhytoKeys*, 95: 37–70. https://doi.org/10.3897/phytokeys.95.21126

- Binh H. T., Ngoc N. V., Tai V. A., Son H. T., Tagane S., Yahara T., 2018c. *Quercus trungkhanhensis* (Fagaceae), a new species from Cao Vit Gibbon Conservation Area, Cao Bang Province, north-eastern Vietnam. *Acta Phytotaxonomica et Geobotanica*, 69(1): 53–61. https://doi.org/10.18942/apg. 201713
- Binh H. T., Ngoc N. V., Son H. T., Tagane S., Yahara T., 2021. *Quercus ngochoaensis* (Fagaceae), a new species from Ba Vi National Park, northern, Vietnam. *Phytotaxa*, 516(3): 283–288. https://doi.org/10.11646/phytotaxa.516.3.7
- Bolger A. M., Lohse M., Usadel B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15): 2114–2120. https://doi.org/ 10.1093/bioinformatics/btu170
- Camus A., 1936–1954. Les Chênes. Monographie du genre *Quercus* et Monographie du genre *Lithocarpus*. Paul Lechevalier Edition, Paris.
- Catchen J. M., Hohenlohe P. A., Bassham S., Amores A., Cresko W. A., 2013. Stacks: An analysis tool set for population genomics. *Molecular Ecology*, 22(11): 3124–3140. https://doi.org/10.1111/mec. 12354
- Cavender-Bares J., González-Rodríguez A., Eaton D. A., Hipp A. A., Beulke A., Manos P. S., 2015. Phylogeny and biogeography of the American live oaks (*Quercus* subsection *Virentes*): a genomic and population genetics approach. *Molecular ecology*, 24(14): 3668–3687.
- Darriba D., Taboada G. L., Doallo R., Posada D., 2012. jModelTest 2: More models, new heuristics and parallel computing. *Nature Methods*, 9: e772.
- Denk T., Grimm G. W., 2010. The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. *Taxon*, 59: 351–366.

- Doyle J. J., Doyle J. L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin*, 19: 11–15.
- Fitz-Gibbon S., Hipp A. L., Pham K. K., Manos P. S., Sork V. L., 2017. Phylogenomic inferences from referencemapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (*Quercus* section *Quercus*). *Genome*, 60(9): 743–755.
- Hipp A. L., Eaton D. A., Cavender-Bares J., Fitzek E., Nipper R., & Manos P. S., 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. *PloS one*, 9(4): e93975.
- Ho P. H., 2000., An illustrated flora of Vietnam (Vol. 2) *Young Publishing House*, Ho Chi Minh City, pp. 982.
- Hubert F., Grimm G. W., Jousselin E., Berry V., Franc A., Kremer A., 2014. Multiple nuclear genes stabilize the phylogenetic backbone of the genus *Quercus*. *Systematics and Biodiversity*, 12(4): 405– 423. http://dx.doi.org/10.1080/14772000. 2014.941037
- Li Q., Zhang J., Coombes A., 2016. *Quercus lineata* (Fagaceae): new distribution records from China and Vietnam and its leaf anatomical features. *Phytotaxa*, 266(3): 226–230. https://doi.org/10.11646/phytotaxa.266.3.7
- Manos P. S., Stanford, A. M., 2001. The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. *International Journal of Plant Sciences*, 162(S6): S77–S93.
- McVay J. D., Hipp A. L., Manos P. S., 2017. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proceedings of the Royal Society B: *Biological Sciences*, 284(1854): 20170300.
- Menitsky Y. L., 2005. Oaks of Asia. Science Publishers, Enfield, NH, USA.

- Ngoc N. V., Binh H. T., Nagahama A., Tagane S., Toyama H., Matsuo A., Suyama Y., Yahara T., 2021. Morphological and molecular evidence reveals three new species of *Lithocarpus* (Fagaceae) from Bidoup-Nui Ba National Park, Vietnam. *PhytoKeys*, 186: 73–92. https://doi.org/10.3897/phytokeys.186.698 78
- Ngoc N. V., Binh H. T., Son H. T., Suyama Y., Yahara T., 2022a. A new species of *Quercus* genus (Fagaceae) from Son Tra Peninsula, Central Vietnam. *PhytoKeys*, 206: 61–73. https://doi.org/10.3897/ phytokeys.206.85635
- Ngoc N. V., Binh H. T., 2022b. Quercus mangdenensis, a new species of Quercus (Fagaceae) from Kon Tum Province, Vietnam. *PhytoKeys*, 215: 73–79. https://doi.org/10.3897/phytokeys.215.936 84
- Nixon K. C., 1993. Infrageneric classification of *Quercus* (Fagaceae) and typification of sectional names. *Annales des Sciences Forestieres*, 50(Supplement): 25–34. https://doi.org/10.1051/forest:19930701
- Nixon K. C., 2006. Global and neotropical distribution and diversity of oak (genus *Quercus*) and oak forests. In: M. Kappelle (Ed.), *Ecological Studies* (Vol. 185): Ecology and conservation of neotropical montane oak forests. Berlin, Heidelberg: Springer Berlin Heidelberg: 3–13.
- Oh S. H., Manos P. S., 2008. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. *Taxon*, 57: 434–451.
- Rochette N. C., Rivera-Colon A. G., Catchen J. M., 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. *Molecular Ecology*, 28: 4737–4754.
- Schwarz O., 1936. Entwurf zu einem natürlichen System der Cupuliferen und

der Gattung Quercus L. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem: 1–22.

- Simeone M. C., Grimm G. W., Papini A., Vessella F., Cardoni S., Tordoni E., Piredda R., Franc A., Denk T., 2016. Plastome data reveal multiple geographic origins of *Quercus* Group *Ilex. PeerJ*, 4: e1897.
- Stamatakis A., 2014. RAxML Version 8: A tool for phylogenetic analysis and postanalysis of large phylogenies. *Bioinformatics*, 30: 1312–1313.
- Suyama Y., Matsuki Y., 2015. MIG-seq: An effective PCR-based method for genomewide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. *Scientific Reports*, 5(1): e16968. https://doi.org/10.1038/srep16963
- Toyama H., Kajisa T., Tagane S., Mase K., Chhang P., Samreth V., Ma V., Sokh H., Ichihasi R., Onoda Y., Mizoue N., Yahara T., 2015. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370(1662): 1–13. https://doi.org/10.1098/rstb.2014.00 08
- Valencia-A. S., Rosales J. L. S., Arellano O. J. S., 2016. A new species of *Quercus*, section *Lobatae* (Fagaceae) from the Sierra Madre Oriental, Mexico. *Phytotaxa*, 269(2): 120–126. https://doi.org/ 10.11646/phytotaxa.269.2.5
- Yang Y., Zhou T., Qian Z., Zhao G., 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, *Quercus*): Evidence from plastid genome using low-coverage whole genome sequencing. *Genomics*, 113(3): 1438–1447.

Name	Sequences (5'–3')	
Forward primers: (Tail + anchor: CTG) + SSR + anchor		
(ACT)4TG-f	CGCTCTTCCGATCTCTGACTACTACTACTTG	
(CTA)4TG-f	CGCTCTTCCGATCTCTGCTACTACTACTATG	
(TTG)4AC-f	CGCTCTTCCGATCTCTGTTGTTGTTGTTGAC	
(GTT)4CC-f	CGCTCTTCCGATCTCTGGTTGTTGTTGTTGTTCC	
(GTT)4TC-f	CGCTCTTCCGATCTCTGGTTGTTGTTGTTGTTTC	
(GTG)4AC-f	CGCTCTTCCGATCTCTGGTGGTGGTGGTGGTGAC	
(GT)6TC-f	CGCTCTTCCGATCTCTGGTGTGTGTGTGTGTGTTC	
(TG)6AC-f	CGCTCTTCCGATCTCTGTGTGTGTGTGTGTGTGAC	
Reverse primers: (Tail + anchor: GAC) + SSR + anchor		
(ACT)4TG-r	TGCTCTTCCGATCTGACACTACTACTACTTG	
(CTA)4TG-r	TGCTCTTCCGATCTGACCTACTACTACTATG	
(TTG)4AC-r	TGCTCTTCCGATCTGACTTGTTGTTGTTGAC	
(GTT)4CC-r	TGCTCTTCCGATCTGACGTTGTTGTTGTTGTTCC	
(GTT)4TC-r	TGCTCTTCCGATCTGACGTTGTTGTTGTTGTTTC	
(GTG)4AC-r	TGCTCTTCCGATCTGACGTGGTGGTGGTGGTGAC	
(GT)6TC-r	TGCTCTTCCGATCTGACGTGTGTGTGTGTGTGTTC	
(TG)6AC-r	TGCTCTTCCGATCTGACTGTGTGTGTGTGTGAC	

Appendix. Sequences of MIG-seq primer set-1 for the 1st PCR. Underlined and **boldface** nucleotides denote tail and anchor sequences, respectively. The difference between the forward and reverse primer sets lies only in their tail sequences. SSR; simple sequence repeat