REDESCRIPTION OF *Caridina cucphuongensis* Dang, 1980 (CRUSTACEA: DECAPODA: ATYIDAE) FROM CUC PHUONG NATIONAL PARK, NORTHERN VIETNAM

Phan Thi Yen¹², Werner Klotz³, Thomas von Rintelen⁴, Dang Van Dong⁵, Do Van Tu⁶,*

¹Graduate University of Science and Technology, VAST, Vietnam
²Hung Vuong University, Nong Trang Ward, Viet Tri City, Vietnam
³Medizinische Universität Innsbruck, Austria
⁴Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
⁵Institute of Ecology and Biological Resources, VAST, Vietnam

Received 26 July 2021, accepted 20 December 2021

ABSTRACT

The freshwater shrimp species *Caridina cucphuongensis* (family Atyidae) was poorly described by Dang (1980). Moreover, the taxonomic status of this species is hard to verify as the types have been lost. This study provides a redescription of the species and designation of a neotype specimen. The *Caridina cucphuongensis* Dang, 1980 is characterized by short rostrum with large teeth on the dorsal margin, long stylocerite, subrectangular endopod of male first pleopod, and short appendix interna of the male second pleopod.

Keywords: *Caridina*, atyid, freshwater shrimps, Cuc Phuong, Ninh Binh, redescription.
INTRODUCTION

Freshwater shrimps of the family Atyidae have been studied in Vietnam from the beginning of the 20th century up to the present (Bouvier, 1904, 1919, 1925; Dang, 1967, 1975; Dang et al., 1980; Cai et al., 1999; Nguyen, 1999; Li & Liang, 2002; Dang & Do, 2007; Do & Dang, 2010, Dang & Ho, 2012; Do et al., 2020, 2021a, b). Until now, a total of 25 atyid species have been recorded from Vietnam (Do et al., 2020, 2021a, b). Dang (1980) described a subspecies *Caridina serrata cucphuongensis* (Dang et al., 1980) from the Cuc Phuong area, Northeast Vietnam. However, the author described only a very few characters of this subspecies with insufficient morphological illustrations. Dang & Do (2007, 2008) and Dang & Ho (2012) elevated this subspecies to a distinct species *Caridina cucphuongensis* Dang, 1980. Unfortunately, the holotype specimen of this species has also been lost due to lack of care. This has caused difficulties for taxonomic studies of atyid shrimps in Vietnam. During recent surveys in the type locality of this species, Cuc Phuong National Park, several specimens whose morphology matches the original description have been collected. In this study, we redescribe this species with full morphological characters and accompanied by illustrations. A neotype specimen of this species is also designated for ensuring taxonomic stability.

MATERIAL AND METHODS

Specimens of *C. cucphuongensis* were collected by hand nets from Cuc Phuong National Park, Ninh Binh province, Northeast Vietnam (Fig. 1), the type area of this species. The specimens were preserved in 70–95% ethanol. Parts of the body were illustrated by using a drawing tube attached to a Leica MZ 12 stereo microscope. The examined specimens are deposited at the Institute of Ecology and Biological
Resources, Vietnam Academy of Science and Technology, Vietnam and Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin. All terminology used follows Chace (1997). The abbreviation cl is used for carapace length, measured from the postorbital margin to the posterior median margin of the carapace in mm. The rostral formula used in the present study is defined as (number of dorsal teeth on the carapace posterior to the orbital margin + number of dorsal teeth on the rostrum anterior to the orbital margin/number of ventral teeth of the rostrum).

Because the holotype has been lost, the designation of a neotype specimen of *C. cucphuongensis* is applied according to the International Code of Zoological Nomenclature (https://www.iczn.org/the-code/the-code-online/) to clarify the taxonomic status and the type locality. Our data and description are sufficient to ensure recognition of the specimen designated.

TAXONOMY

Family Atyidae De Haan, 1849

Genus Caridina H. Milne Edwards, 1837

Caridina cucphuongensis Dang, 1980

(Figs. 2–4)

Caridina serrata cucphuongensis Dang in Dang, Thai & Pham, 1980: 404–405; Fig. 230. [type locality: streams in Cuc Phuong area, Ninh Binh province, Northern Vietnam].

Examined material

Neotype: male, cl 4.1 mm, IEBR-FS 006, Vietnam, Ninh Binh, Cuc Phuong National Park, a small stream near the footpath to the one thousand year old tree (Vietnamese name: chò), 20°21’0.779”N - 105°36’11.675”E, coll. Thomas von Rintelen & Do Van Tu, 4 March 2017.

Other material: 5 males, cl 3.6–4.1 mm, 2 females, cl 4.2 and 4.4 mm, ZMB 30234, same data as neotype; 2 males cl 3.0 and 4.0 mm, 4 females cl 4.2–5.3 mm, 2 ovigerous females cl 4.6 and 4.8 mm, ZMB 31774, Vietnam, Ninh Binh, Cuc Phuong National Park, a stream on footpath Bong, 20°21’33.2”N - 105°34’49.0”E, coll. Thomas von Rintelen, 7 May 2019; male, cl 3.8 mm, ZMB 31782, Vietnam, Ninh Binh, Cuc Phuong National Park, a stream on footpath Bong, 20°20’48.0”N - 105°36’23.0”E, coll. Hoang Anh Tuan, 8 May 2019; ZMB 30752, Vietnam, Ninh Binh, Cuc Phuong National Park, a stream on footpath Bong, 20°21’33.2”N - 105°34’49.0”E, coll. Andreas Karge, 12 July 2009; ZMB 31776, Vietnam, Ninh Binh, Cuc Phuong National Park, a stream near Bong, limestone terraces, 20°21’18.8”N - 105°35’22.4”E, coll. Sarah Ehlers, 10 May 2019.

Comparative material

Description

Cephalothorax and cephalic appendages

Carapace length 3.0–5.3 mm (median 4.1 mm, n = 16). Rostrum straight, rather slender, just overreaching the eyes to
reaching to the beginning of second segment of antennular peduncle, 0.28–0.29 (median 0.29) times as long as carapace, rostral formula: 0–3+2–7/0–2, ventral teeth placed distally. Suborbital angle acute, completely fused with antennal spine; pterygostomian margin rounded, slightly produced forward (Fig. 2A).

Figure 2. *Caridina cucphuongensis* Dang, 1980; male, cl 4.1 mm (ZMB 30234). A) Cephalothorax and cephalic appendages, lateral view; B) Antennular peduncle; C) Scaphocerite; D) Telson; E) Distal portion of telson; F) Preanal carina; G) Uropodal diaeresis; H) Mandible; I) Maxillula; J) Maxilla; K) First maxilliped; L) Distal end of palp of first maxilliped; M) Second maxilliped; N) Third maxilliped. Scale: A–C, F = 1 mm; E, G–N = 0.5 mm
Eyes well developed with globular cornea, anterior end reaching to 0.6 times length of basal segment of antennular peduncle (Fig. 2A). Antennular peduncle 0.55–0.65 (median 0.61) times as long as carapace; basal segment 1.67–2.0 (median 1.77) times as long as second segment, second segment 1.3–1.5 (median 1.5) times as long as third segment (Fig. 2B). Styllocerite reaching to the beginning of second segment of antennular peduncle (Fig. 2B). Scaphocerite rather angular, reaching beyond distal end of antennular peduncle, lateral tooth not reaching beyond distal margin, 2.5–2.93 (median 2.87) times as long as wide (Fig. 2C).

Abdominal somites, telson and uropods

Sixth abdominal somite 0.45–0.5 (median 0.48) times length of carapace, 1.46–1.64 (median 1.55) times as long as fifth abdominal somite, 0.85–0.95 (median 0.93) times length of telson. Telson length 2.0–2.33 (median 2.2) times as long as proximal wide, distal margin triangular, terminating in a short median projection, with 4–5 pairs of dorsal spiniform setae and one pair of dorso-subdistal spiniform setae; distal end with 3–4 pairs of spiniform setae, lateral pair longer than intermediate pairs, sublateral pair shortest (Figs. 2D, 2E). Preanal carina round, slightly bent backwards, with few setae, lacking a spine (Fig. 2F). Uropodal diaeresis with 18–21 (median 20) movable spiniform setae, outermost one slightly longer than lateral angle (Fig. 2G).

Incisor process of mandible ending in one row of 6–8 irregular teeth, molar process truncated (Fig. 2H). Lower lacinia of maxillula broadly rounded, upper lacinia elongated, with number of distinct teeth and setae on inner margin, palp stout with few simple setae at tip (Fig. 2I). Upper endites of maxilla subdivided, palp short, scaphognathite tapering posteriorly, with numerous long, curved setae at posterior margin (Fig. 2J). Distal end of palp of first maxilliped triangular, with a short projection; flagellum of the exopod very elongated, endopod high, reaching 0.9 times length of flagellum of exopod (Figs. 2K, 2L). Podobranch of second maxilliped well developed, with finger-like projections (Fig. 2M). Third maxilliped reaching to distal end of antennular peduncle, ending in single terminal claw, exopod reaching 0.3 times length of penultimate segment; ultimate segment as long as penultimate segment (Fig. 2N).

Pereiopods

Epipods present on first four pereiopods. First pereiopod short, robust, reaching beyond end of basal segment of antennular peduncle; chela 2.0–2.23 (median 2.09) times as long as wide, 1.25–1.47 (median 1.3) times length of carpus; tips of fingers rounded, without hook; dactylus shorter than palm, 0.57–0.96 (median 0.92) times as long as palm; carpus excavated strongly anteriorly, 1.46–1.89 (median 1.71) times as long as wide, 0.90–0.95 (median 0.92) times length of merus; merus 2.29–2.86 (median 2.56) times as long as wide, longer than ischium (Fig. 3A). Second pereiopod long, slender, reaching to distal end of antennular peduncle; chela 2.56–3.0 (median 2.78) times as long as wide, 0.66–0.85 (median 0.74) times length of carpus; tips of fingers rounded, without hook; dactylus 1.33–1.74 (median 1.43) times as long as palm; carpus 4.83–5.83 (median 5.67) times as long as wide, 0.94–1.11 (median 1.02) times as long as merus; merus 5.64–6.8 (median 6.30) times as long as wide, longer than ischium (Fig. 3B). Third pereiopod slender, reaching beyond end of scaphocerite by its dactylus, terminating in one claw, with five to six accessory spiniform setae on flexor margin, dactylus 2.54–3.08 (median 2.86) times as long as wide (terminal claw and spiniform setae on flexor margin included), propodus 7.65–9.38 (median 8.75) times as long as wide, 3.51–3.94 (median 3.68) times as long as dactylus; carpus 4.9–5.05 (median 5.02) times as long as wide, 0.72–0.85 (median 0.78) times as long as propodus, 0.55–0.6 (median 0.58) times as long as merus; merus 6.07–7.08 (median 6.64) times as long as wide, bearing four strong, movable spiniform setae on posterior margin of outer surface; ischium without movable spiniform seta (Figs. 3C, 3D). Fifth pereiopod slender, reaching to
end of second segment of antennular peduncle, dactylus 3.3–3.9 (median 3.5) times as long as wide (terminal claw and spiniform setae on flexor margin included), terminating in one large claw, with 42–52 spiniform setae on flexor margin; propodus 11.23–12.67 (median 11.43) times as long as wide, 2.90–3.41 (median 3.20) times length of dactylus; carpus 4.63–5.8 (median 5.11) times as long as wide, 0.48–0.56 (median 0.55) times as long as propodus, 0.5–0.62 (median 0.56) times as long as merus; merus 6.64–7.5 (median 7.22) times as long as wide, bearing 3–4 strong, movable spiniform setae on posterior margin of outer surface; ischium without movable spiniform seta (Figs. 3E, 3F).

Figure 3. Caridina cucphuongensis Dang, 1980; male, cl 4.1 mm (ZMB 30234). A) First pereiopod; B) Second pereiopod; C) Third pereiopod; D) The same, dactylus; E) Fifth pereiopod; F) The same, dactylus; G) Male first pleopod; H) Endopod of male first pleopod; I) Male second pleopod; J) Appendix masculina and interna of male second pleopod.

Scale: A–J = 0.5 mm
Redescription of Caridina cucphuongensis

Pleopods

Endopod of male first pleopod extending to 0.6 times length of exopod, subrectangular in shape, anterior part not folded backwards, 2.5–2.82 (median 2.8) times as long as proximal width, inner margin concave, outer margin slightly convex, rounded distally, long plumose setae on outer and distal margins, strong and short setae on inner margin; with appendix interna exceeding terminal margin of endopod by 0.4 of its length (Figs. 3G, 3H). Appendix masculina of male second pleopod slender, reaching to proximal 0.7 times endopod length, 7.9 times as long as distal width, stick-shaped, slightly widened distally with some short spiniform setae on outer surface and some long spiniform setae on distal surface; appendix interna at middle of appendix masculina, narrow, small, extending about 0.4 times length of appendix masculina (Figs. 3I, 3J).

Reproductive biology

Two ovigerous females, ZMB 31774, cl 4.6 and 4.8 mm, undeveloped eggs 1.08 × 0.72 mm, eggs with eyespots 1.23 × 0.81 mm, ovigerous female with eyespots carries 23 eggs.

Coloration

The body is yellowish to grey and dark grey in color. Dark grey spots present, sometimes look like as transverse stripes (Fig. 4).

Habitat

This species was found in the streamlets with mixed sand, gravel, and rock substrate, and clear water flowing from the natural forest (Fig. 5).

Figure 4. Caridina cucphuongensis Dang, 1980, in situ photograph

Figure 5. Habitat of Caridina cucphuongensis Dang, 1980 in Cuc Phuong National Park.
REMARKS

Caridina cucphuongensis Dang, 1980 in Dang & Ho (2012) is characterized by several morphological characters such as short rostrum with large teeth on dorsal margin, long stylocerite, subrectangular endopod of male first pleopod, and short appendix interna of male second pleopod. However, the branchial formula of this species does not the same as that of generally found in *Caridina* but it is more similar to those of *Paracaridina* Liang, Guo & Tang, 1999 (5 pairs of well developed pleurobranchs; 2 pairs of arthrobranchs on third maxillipeds, with second pair strongly reduced in size; 1 pair of well developed podobranch on the second maxilliped, arthrobranch absent on the first pereiopod, epipods well developed on third maxillipeds and the first four pereiopods). This character, however, is not unique to *Paracaridina* (von Rintelen et al., 2008). Moreover, there is weak support from genetic analysis to put this species under the genus *Paracaridina* (Do et al., 2021a). Therefore, we have retained this species under the genus of *Caridina*.

Caridina cucphuongensis somewhat resembles *C. serrata* Stimpson, 1860, *C. clinata* Cai, Quynh & Ng, 1999, *C. tricincta* Do, von Rintelen & Dang, 2020 and *C. pacbo* Do, von Rintelen & Dang, 2020 by possessing a short rostrum and the shape of endopod of male first pleopod. However, *C. cucphuongensis* can be easily distinguished from these species by the characters shown in Table 1.

<table>
<thead>
<tr>
<th>Morphology characteristics</th>
<th>C. cucphuongensis</th>
<th>C. serrata</th>
<th>C. clinata</th>
<th>C. tricincta</th>
<th>C. pacbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rostrum formula</td>
<td>1–3+5–7/0–2</td>
<td>0–5+13–12/0–6</td>
<td>2–5+10–10/2–5</td>
<td>0–3+0–6/0–5</td>
<td>2–6+5–12/0–3</td>
</tr>
<tr>
<td>Stylocerite</td>
<td>Reaching to</td>
<td>Reaching to</td>
<td>Not reaching</td>
<td>Reaching</td>
<td>Mostly</td>
</tr>
<tr>
<td></td>
<td>beginning of</td>
<td>the end of</td>
<td>distal margin</td>
<td>distal end</td>
<td>reaching</td>
</tr>
<tr>
<td></td>
<td>second segment of</td>
<td>basal segment</td>
<td>of basal</td>
<td>of basal</td>
<td>beyond the</td>
</tr>
<tr>
<td></td>
<td>antennular peduncle</td>
<td>to middle of</td>
<td>segment of</td>
<td>segment of</td>
<td>end of basal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>second segment</td>
<td>antennular</td>
<td>antennular</td>
<td>segment,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of antennular</td>
<td>segment.</td>
<td>peduncle.</td>
<td>sometimes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>segment.</td>
<td></td>
<td></td>
<td>to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>middle of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>second</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>segment</td>
</tr>
<tr>
<td>Endopod of</td>
<td>2.5–2.82 (median 2.8)</td>
<td>2.5 times</td>
<td>3.0–3.25 (median 3.0)</td>
<td>0.86–3.33 (median 3.09)</td>
<td>Mostly</td>
</tr>
<tr>
<td>male first</td>
<td>times as long as</td>
<td>as long as</td>
<td>times as long</td>
<td>times as long</td>
<td></td>
</tr>
<tr>
<td>pleopod</td>
<td>proximal width</td>
<td>proximal</td>
<td>as long as</td>
<td>as long as</td>
<td>reaching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>proximal</td>
<td>proximal</td>
<td>beyond the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>width</td>
<td>width</td>
<td>end of basal</td>
</tr>
<tr>
<td>Appendix masculina of</td>
<td>Extending about 0.4 times</td>
<td>Extending</td>
<td>Extending</td>
<td>Extending</td>
<td>Mostly</td>
</tr>
<tr>
<td>male second</td>
<td>length of appendix</td>
<td>about 0.3 times</td>
<td>about 0.8</td>
<td>about 0.9</td>
<td>reaching</td>
</tr>
<tr>
<td>pleopod</td>
<td>masculina</td>
<td>length of appendix</td>
<td>times length</td>
<td>times length</td>
<td>beyond the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>masculina</td>
<td>of appendix</td>
<td>of appendix</td>
<td>end of basal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>masculina</td>
<td>masculina</td>
<td>segment,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sometimes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>middle of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>second</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>segment</td>
</tr>
<tr>
<td>Uropodal diaeresis</td>
<td>18–21 (median 20)</td>
<td>14–17 movable</td>
<td>12–18 movable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>movable spiniform</td>
<td>spiniform</td>
<td>spiniform</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>setae</td>
<td>setae</td>
<td>setae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conservation status

We have conducted many surveys and collected samples of atyid shrimp across Vietnam. However, so far this species has only been found in a few streamlets in the Cuc Phuong National Park. With a very narrow distribution, according to IUCN Red List Categories and Criteria (IUCN, 2019), this species could be classified as endangered if any threats should emerge. Good protection of forest cover as well as limiting impacts that can cause water pollution are important measures to conserve this species.

Acknowledgements: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.05-2017.302. Also, it is supported by the German Federal Ministry for Education and Research (BMBF) under grant no. 01DP17052 (VIETBIO). We would like to thank Le Quang Tuan for preparing the map. A big thanks to Arthur E. Bogan for preparing the map. A big thanks to Arthur E. Bogan for his kind help in improving English.

REFERENCES

Phan Thi Yen et al.

