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ABSTRACT 

In this study, 19 surface bioclimatic variables of high spatial resolution 0.00226o (~ 250 m) are 

generated in a Geographic Information System by the combination of (1) the raster dataset of 

monthly temperature and precipitation obtained from the global WorldClim database at 0.00833o 

spatial resolution for the period of 1960–2000; and (2) the climate data (temperature and 

precipitation) of the Central Highlands and Southern Central Coast collected from the 31 

temperature and 97 precipitation recording sites for the period of 1991–2015. The statistical 

downscaling method is applied, using multiple linear regression analysis, in which elevation, 

geographic coordinates, and distance from the coast are treated as independent variables, to 

estimate the distribution of temperature; and the B-Spline interpolation method combined with 

multiple linear regression analysis is employed on precipitation over the study area. The 

outcomes of the two main analyses are computed to create 19 high spatial resolution bioclimatic 

variables. While using only local climate data on analyzing the regression models results in high 

fluctuation of estimated temperature, the combination of the two datasets is more informative. 

The spatial distribution of our interpolated precipitation is similar to the WorldClim data but has 

a smaller difference in the mean annual precipitation. The results, which shows higher spatial 

resolution and are closer to the observed data than those from the WorldClim, could be better 

applied for predicting species distribution in the region. 

Keywords: Bioclimatic variables, climate data, downscaling, multiple linear regression, 

precipitation, temperature. 
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INTRODUCTION 

The distribution of a species is influenced 
by several biological and environmental 
factors (Franklin, 2010), of which bioclimatic 
variables (i.e. variables are derived from 
climatic data and biologically meaningful) 
have been widely used for species distribution 
models (SMDs) in the fields of ecology 
research and biodiversity conservation for 
both vegetation and animals (Bett et al., 2012; 
Liu et al., 2013; Porfirio et al., 2014; 
Raghavan et al., 2016; Chandra, 2016). 
Bioclimatic variables were first introduced in 
1986 in Australia, conceptually developed by 
Henry Nix (John, 1991; Booth et al., 2014). 
Since then, several significant steps have 
improved the concept and methods by the 
WorldClim team (Booth, 2018). The latest 
version 2 of bioclimatic variables and version 
2.1 of climatic variables, as well the previous 
versions, are surface models constructed from 
surface climatic models interpolated from 
monthly temperature and precipitation values 
of climatic data gathered at global 
meteorological stations and other data sources 
(Fick & Hijmans, 2017). The WorldClim 
database represents the most common source 
of climate data for this kind of modelling, 
covering all of the global land areas, 
excluding Antarctica (Wagner et al., 2017; 
WorldClim1), with the spatial resolution 
between 30 arc-second (~ 0.86 km2) to 10 
minutes (~ 344 km2) (WorldClim2). 

Climatic surface data and bioclimatic 
variables were also studied and developed by 
other groups such as CHELSA (Karger, 
2017), PRISM (Daly et al., 2008; O’Donnell, 
2012), CliMond (Kriticos, 2011), and 
TerraClimate (Abatzoglou et al., 2018) where 
spatial resolution is similar or coarser. These 
datasets are either at the global scale or 
continental scale and were constructed by 
various approaches, some of which were 
partly inherited from the WorldClim, while 
the others incorporated new variables into the 
development of surface climatic data. 

Applications of bioclimatic variables have 
been implemented on geographic regions at 
various scales ranging from sub-regional to 

continental and global scale, which are mostly 
between regional and continental scales, both 
taking more than 70% (Porfirio et al., 2014). 
Numerous research projects have made use of 
these bioclimatic variables, all 19 variables or 
some subsets, most of these have focused on 
Europe with only a small fraction (~3%) 
covering Asia (Porfirio et al., 2014; Booth et 
al., 2014). 

Presently, global data of the finest spatial 
resolution of the mentioned bioclimatic 
variables is 30 arc-second, which is broadly 
useful for SDMs at various spatial scales. 
Applications at a small scale, even at sub-
country size or small areas, utilize this 
resolution. Recent examples of studies in Asia 
include research on primate distribution for 
Vietnam (Nguyen et al., 2019), the discovery 
of a new crocodile-lizard population in the 
border region of Vietnam and China (van 
Schingen et al., 2016), primates in Indochina 
(Bett et al., 2012), and biodiversity and forest 
health at the continental scale of Tropical Asia 
(Deb, 2016; Deb et al., 2017). 

The WorldClim dataset in 30 arc-second 
resolution is widely used for SDMs because 
of its availability and global coverage (Marchi 
et al., 2019), and it is better at capturing the 
environmental variables than coarser 
resolutions where there is a limited number of 
observation stations, particularly in 
mountainous and remote areas (Fick & 
Hijmans, 2017). Although the resolution of 30 
arc-second is useful for modeling the 
distribution of widespread species, it seems to 
cause SDMs to omit or underestimate the 
distribution of rare and restricted range 
species. A study on habitat loss of species in 
the Swiss Alps under climate change impacts 
at a local-scale (25 m × 25 m grid cells) 
predicted that 100% of species persisted in 
their habitats under the local-scale models 
while all their suitable habitats were lost 
under the European-scale model (10’ × 10’) 
(Marchi et al., 2019). Organisms, especially 
restricted-range and locally endemic species, 
experience or highly adapt to the local 
environment in a way that is quite different 
from a large-scale environment (Collen et al., 
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2014; Peterson et al., 1998). For ecological 
applications, the representation of the 
temporal and spatial variability of temperature 
and precipitation is important to infer 
ecological niches and species distributions. 
Consequently, errors in the climatic dataset at 
this small spatial scale can accumulate in such 
studies, which calls for an improvement of 
climatic information available for such 
analyses (Karger et al., 2017). In order to 
make SMDs more detailed for localization of 
species distribution, a higher spatial resolution 
of surface climatic data must be performed 
relying on downscaling methods and adopted 
local climatic data, which results in a fine 
resolution of surface bioclimatic dataset. 

This paper describes the construction of 
19 fine spatial resolution bioclimatic variables 
by the integration of surface climatic dataset 
obtained from the WorldClim and local 
climatic data with geographic data for the 
Central Highlands (CH) and Southern Central 
Coast (SC) of Vietnam (Fig. 1). Statistical 
downscaling method and geostatistical spatial 
interpolation are applied to address the above 
problem and to yield an expected spatial 
resolution of equivalent 250 m for surface 
climate variables. These results are of 
significant use in constructing 19 bioclimatic 
variables applied for SDMs. 

MATERIALS AND METHODS 

Study area 

The study area includes the Central 
Highlands and Southern Central Coast of 
Vietnam (10o34’N–16o12’N and 107o12’E–
109o27’E), which covers nearly 100,000 km2 
distributed in Da Nang City and 12 other 
provinces (Fig. 1). The landscape of CH-SC 
comprises two typical regions known as (i) 
the narrow coastal plains mixed with low 
mountains adjacent to the west with CH, and 
the eastern portion of plains close to the East 
Sea, (ii) low mountains with plateaus of Dak 
Lak, Plei Ku and Lam Vien, collectively 
referred as the Tay Nguyen Plateau (CH) 
(Regalado et al., 2005). Topographically, low 
mountains located in this study area are 
referred to the southern portion of the Truong 

Son (Annamite) Range, which extends 
through Laos, Vietnam and a small area in 
Cambodia; the highest elevation in CH is at 
the top of Ngoc Linh at 2,598 m. In the study 
area, South Truong Son Range runs parallel to 
the coast, northwest-southeast in the north and 
then the north-south direction in the south. 
The eastern slope of the range rises steeply 
from the plain; the western slope is more 
gentle, forming large plateaus. 
Climatologically, Vietnam has a monsoon 
system of southwesterly in April-September 
and northeasterly in October-March (Phan et 
al., 2014). However, the rainfall 
characteristics over the study region are 
complicated, switching from summer (April, 
May) to winter (November, December) in 
different places. The rainy season in CH and 
north-central SC is starting in April-May, and 
withdrawing in October-November, 
meanwhile, in the southern tip of SC (Ninh 
Thuan, Binh Thuan provinces) the rainy 
season arrives late and stays in a short period 
time, usually begins in September and ends in 
December (Nguyen et al., 2013, 2014). 

The total rainfall in the rainy season 
contributes more than 80% of the annual 
rainfall. The annual rainfall ranges from  
1,500 mm to 2,400 mm and the inter-annual 
variations of rainfall are mainly influenced by 
seasonal winds. During the rainy season, the 
monthly rainfall exceeds 200 mm and reaches 
its peak in August and September in most of 
the study region. The average annual 
temperature is rather low in comparison with 
other regions, ranging from 20 oC to 25 oC 
and the highest temperatures are in April and 
May from 27 oC to 32 oC (Nguyen et al., 
2013; CGIAR, 2016). In Central Vietnam, 
rainfall distributions and rainy seasons are 
significantly controlled by the combination of 
cold surges and tropical cyclones, and roughly 
two thirds of the heavy rainfall events are 
caused by tropical cyclones. Central Vietnam 
has its maximum monthly rainfall in autumn 
(September to November), and at some sites 
in the region, the annual rainfall can reach 
3,600 mm (Hue station) to 4,000 mm (Ba To 
station) (Nguyen & Nguyen, 2004). 
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Figure 1. Location of the study area in the Indochina region. CH-SC in thick solid lines  
(left map) and its surroundings with detailed terrain (right map).  

Colour ramp bar indicates elevation in meters 

 
Data sources 

Data were assembled from the following 
sources: (1) Surface climatic data of 

WorldClim database, (2) Climate data 
(temperature and precipitation) recorded by 

local meteorological stations, (3) Digital 
Elevation Model (DEM) 1 arc-second, (4) 

Distance from the coast (DC), and (5) 

Geographic coordinates: longitude (LON) and 
latitude (LAT). 

Surface climate data of the WorldClim (in 
GeoTiff format) are the mean monthly value 
for the period 1970–2000, including variables 
of monthly mean, maximum, minimum 
temperature, and precipitation, one for each 
month of the year. With spatial resolution 30 
arc-second (or 0.00833o), 0.86 km2 at the 
equator, they are commonly considered at the 
spatial resolution of 1 km or 1 km2. These 
datasets are downloadable on the WorldClim 
webpage (WorldClim1) (Fick & Hijmans, 

2017). Presently, they are the finest-resolution 
global data and represents the Vietnam 
climate pattern more properly than do the 
others mentioned. 

Precipitation and temperature data were 
provided by the Center for Hydro-
Meteorological Technology Application 
(Vietnam Meteorological and Hydrological 
Administration) based on records from 97 
sites in the national hydro-meteorological 
station network (Fig. 2). Among these, 31 
hydro-meteorological stations observe both 
temperature and rainfall and 66 rain gauge 
sites record rainfall only. This dataset includes 
average, maximum and minimum 
temperatures in degrees Celsius and 
precipitations in millimetres for each month, 
from 1991 to 2015 (25-year period) and 
contains geographic coordinates and altitudes 
of the stations above the sea level. The spatial 
distribution of these sites is uneven as 
illustrated in Figure 2. 
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Figure 2. Geographic locations of data-
recording sites used in the study 

 
DEM of Shuttle Radar Topology Mission 

(SRTM) 1 Arc-second Global version 3 is 
available for downloading at 
https://earthexplorer.usgs.gov. In this version, 
missing data or gaps were filled with other 
digital elevation data from Japan and 
Germany, as a result, it has less error than 
older versions. The most recent version was 
released by the USGS in January 2015 
(https://earthdata.nasa.gov/). Notably, high 
resolution of elevation data is one of the 
important auxiliary data, which enable 
spatially downscaling information of interest 
in a valid fashion (Hengl, 2009). 

DC, LON and LAT were processed and 
extracted from DEM. The coastline was 
vectorized from DEM and utilized as a 
baseline to calculate distance from all 
locations to the line. Small bays were 
generalized as these were considered small 
water bodies. Distance from the coast was 
identified by the straight line, from a cell to 
the coastline, which is relatively perpendicular 

to the coastline and measured in kilometres. 
Geographic coordinates were extracted from 
DEM for each cell by latitude and longitude to 
produce two separated raster data, whose unit 
is decimal degree as other datasets. 

Data preparation 

The quality of the raster data is highly 
dependent on the amount of input data, which 
varies in space and time (Maeda et al., 2020). 
There is less error and consequently higher 
interpolation accuracy in regions with high 
station densities than those with low spatial 
data density. Particularly, in places with very 
few weather stations and strong gradients or 
topographically complex terrain, climate 
interpolation is difficult, leading to a poor 
representation of climatic variability (Fick & 
Hijmans, 2017; Karger et al., 2017). It 
becomes a constraint to make SDMs more 
detailed for localization of species distribution 
(Fick & Hijmans, 2017). This sense describes 
the study area of CH-SC alike, where 
meteorological stations are sparse and 
spatially unevenly distributed. To improve 
this situation, long-term climate data of 
precipitation and temperature of weather 
stations in CH - SC were obtained to integrate 
with the surface climatic dataset of 
WorldClim. These datasets were interpolated 
to make fine spatial resolution surface 
climatic data as the basis for high resolution 
of bio-climatic variables. 

WorldClim data: The values of the 
climate data were drawn from the 30 arc-
second surface dataset (or 0.00833o) at the 
interval of 0.0416o (roughly 4.5 km distance) 
to generate a dataset of point vectors. These 
datasets of point vectors, which were 
featured in values of temperature (mean, 
minimum, maximum) and precipitation for 
12 months, were used to interpolate. 

Station data: A dataset of monthly 
temperature and precipitation for each year for 
the period 1991–2015 was checked to remove 
any outliers. Missing data at rain-gauge 
stations are categorized as (i) no data for all 
months of the year, as observed at some 
stations up to 4 or 5 years; (ii) no data for 

https://earthexplorer.usgs.gov/
https://earthdata.nasa.gov/
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months, usually in the dry season, for all years 
of the period; and (iii) no data in some months 
of the dry season for a few years. Despite 
missing data at those stations for years and 
months, the remaining available data were 
kept for calculation for those stations to limit 
error caused by low spatial data density (Fick 
& Hijmans, 2017). Those stations are in 
remote mountainous areas where station 
density is low and thus those temporal data 
were yet included in calculation later. There 
are no issues with the temperature data  
(Fig. 2). In all cases of missing data, they 
were treated as no data and were not counted 
in averaging the monthly mean. The two 
datasets were averaged out at the monthly 
long-term mean for the period up to 25 years. 

The 31 stations with temperature data 
included for analysis range from 2.0 m to 
1,500 m in altitude (while the topography of 
the study area includes elevations ranging 
from 0 m to above 2,500 m), with 68% 
stations situated below 500 m, 21% stations 
from 500 m to 1,000 m and 3% (one station) 
above 1,000 m (i.e. Da Lat Station: 1,508 m). 
The average density is 0.31 stations per 1,000 
km2 or one station for more than 3200 km2. 
The distance between two adjacent stations 
ranges from 9.4 km to 113 km. The 97 sites 
with precipitation data have a better density, 
0.97 stations per 1,000 km2, or one station for 
roughly 1,030 km2. There are 71% of the 
stations situated below 500 m in altitude, 24% 
from 500 m to 1,000 m and 5% (equal to 5 
stations) above 1,000 m. Some stations are 
quite close to one another, even less than  
2 km. In general, the spatial distribution of 
precipitation stations is like the situation of 
temperature stations. 

The dataset of 0.0416o interval was 
integrated with the station data to produce a 
new one, which is named hereafter 
WorldClim-Station data. These two datasets 
were synchronized together with variables of 
mean monthly temperature (average, 
minimum, maximum) and monthly 
precipitation. Such a combination would 
contribute more local specific features of 
temperature and precipitation to interpolated 

models than using WorldClim data solely. 
These datasets were used for spatial 
interpolation and regression calculation for 
the next procedures. 

For surface modelling, the DEM of 1 arc-
second resolution was resized to 0.00226o 
(~250 m) spatial resolution by the nearest 
neighbour resampling technique, which is 
preferable when the result is used for further 
model analysis, because the original values 
were preserved, the terrain of the study area 
was intact (Prajapati et al., 2012; Le Coz et 
al., 2009) and, in particular, values of 
elevation of individual mountaintops were not 
shifted (Sharma et al., 2016). Distance from 
the coast, longitude, and latitude values were 
extracted from this 0.00226o DEM. This step 
created four surface gridded datasets with a 
spatial resolution of 0.00226o (~250 m), of 
which the elevation dataset (hereafter called 
ALT) was applied as the baseline data for 
afterwards spatial interpolation. 

Like Hutchinson (1995), we expanded the 
spatial extent of all datasets used for the 
study area, especially the western margin of 
CH-SC (see the right image of Figure 1), to 
improve the accuracy of spatial interpolation. 
This expansion included WorldClim, ALT, 
DC, LON, and LAT datasets. This also holds 
for the WorldClim-Station point dataset to 
ensure a high statistical confidence level. 

Data analysis for downscaling climatic 
variables 

The statistical approach was used to 
generate interpolated climate surfaces, which 
varies with temperature and precipitation 
variables as described below. 

Temperature 

The correlation between altitude and 
temperature (Hutchinson, 1991; Andrews, 
2010), which varies from place to place and in 
time depending on actual atmospheric 
conditions, was estimated using a linear 
regression analysis of temperature versus 
altitude (Loomis et al., 2017; Shen et al., 
2016). This analysis has been widely used in 
developing empirical models (Lanzante, 1996; 
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Ninyerola et al., 2000). Like the techniques 
applied for climate variables of the 
WorldClim (Hijmans et al., 2005), datasets on 
longitude and latitude, and distance from the 
coast were used as independent variables. It is 
noted that WorldClim used the commercial 
ANUSPLIN software package to generate 
surface climatic data with the thin-plate spline 
technique (Hutchinson, 1995; Hijmans et al., 
2005; Fick & Hijmans, 2017). 

In our study, multiple linear regression 
with independent variables of altitude, 
distance from the coast, and geographical 
coordinates, and a dependent variable of 
monthly temperature, which had been 
obtained from the previous step, was used to 
model the relationship between the 
temperature and the other four independent 
variables by fitting a linear equation to sample 
data to estimate temperature according to the 
explanatory variables. These models then 
were applied to project back on the 
elevational surface of the altitude data (ALT) 
to create monthly surface temperature 
variables (average, minimum, maximum). The 
general equation is: 

t = a0 + b1*(ALT) + b2*(LON) + b3*(LAT) + 

b4*(DC) (1) 

Where: t is estimated temperature 
corresponding to the temperature at a given 
altitude, distance from the coast (DC) and x, y 
location (LON, LAT); and a0 and b(n) are the 
regression coefficients estimated from a 
statistical analysis of datasets. All the 
calculations were done with α less than 0.05 
regarding the relation between temperature, 
dependent variable, with independent 
variables to get statistical significance. 
Multiple linear regression with four 
independent variables might occur 
multicollinearity, which reduces the precision 
of the estimated coefficient values and 
weakens the statistical model. In this setting, 
Variance Inflation Factors (VIF) values were 
used to identify the correlation between 
independent variables and the strength of that 
correlation. If VIFs values were greater than 
5, they were considered with care or 

eliminated from the regression, and the 
calculation process was repeated without that. 
VIFs between 1 and 5 were acceptable (Hair 
et al., 2014) and other values were regarded, 
such as the correlation coefficient, standard 
error, confidence of interval and p-value. 

Precipitation 

While temperature is closely correlated 
with altitude, particularly in the long-term 
mean, precipitation is considered as a highly 
non-linear phenomenon (Karger et al., 2017), 
and although interpolation and statistical 
downscaling approaches may also integrate 
land-surface predictors such as elevation and 
slope aspects, acceptable outcomes still 
require a more or less regular distribution of 
meteorological stations and a proper 
representation of topo-climatic settings. The 
relationship is rather complicated, though 
precipitation is also significantly affected by 
the terrain (Bohner et al., 2018). Orographic 
effect with windward-leeward, rain shadow 
and topographic aspect was included in 
interpolation models, such as PRISM (Daly et 
al., 2008) or ANUCLIM mentioned above, a 
set of coefficient values is needed to generate 
interpolated values at required locations to 
develop the WorldClim dataset (Xu et al., 
2010). The development of these surface 
models is mathematically sophisticated; for 
example, the ANUCLIM takes a multivariate 
regression of the thin-plate smoothing spline 
algorithm for spatial interpolation (Hijman et 
al., 2005). 

For interpolating precipitation, we applied 
the same multiple linear regression analysis as 
in the case of temperature described above, 
with the minor modification that the variable 
of DC was not used, and a parameter of the 
residual was added to the regression model to 
optimize predicted variables with least error. 
The regression function is: 

P = a0 + b1*(ALT) + b2*(LON) + b3*(LAT) + 

ε (2) 

Where: P is predicted precipitation at a given 
elevation and its location (LON, LAT); a0 and 
b(n) are calculated from a statistical analysis of 
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the dataset, ε (or the residual) is the difference 
between the observed value (y) and the 
predicted value (ŷ). Each data point has one 
residual computed from the observed value 
minus the predicted value (ε = y – ŷ). The 
regression function of this step was used to 
create a new grid with regression-based values 
on the surface of the DEM data with B-Spline 
interpolation. The B-Spline interpolation 
technique (or basic spline) is based on a 
mathematical model for surface estimation 
that fits a minimum-curvature surface through 
the input points while passing through the 
sample points (Ly et al., 2013). Spline makes 
a two-dimensional minimum curvature spline 
interpolation on a point dataset yielding a 
smooth surface that passes exactly through the 
input points, and the general performance of 
this computation is similar to (but simpler 
than) the ANUCLIM (Yang et al., 2015). This 
approach was employed to take advantage of 
the World Bioclim dataset and locality of 
precipitation. Similar to the temperature 
regression analysis, VIFs of variables of ALT, 
LON and LAT were also considered. 

Bioclim variables computation 

The obtained monthly surface 
temperature and rainfall data of 0.00226o 
were used to generate the 19 bioclimatic 
variables representing annual trends (mean 
annual temperature and annual precipitation), 
seasonality (annual variability in temperature 
and precipitation) and extreme or limiting 
environmental factors (temperature of the 
coldest and warmest month, and precipitation 
of the wet and dry quarters). A quarter was 
three consecutive months. The 19 variables 
were coded from Bio1 to Bio19. Bio1 to 
Bio11 are relevant to temperature and Bio12 
to Bio19 correspond to precipitation. These 
variables were constructed based on the 
description from WorldClim (WorldClim3) 
as follows: 

Bio 1 = Annual Mean Temperature. 

Bio 2 = Mean Diurnal Range (Mean of 
monthly (max temp - min temp)). 

Bio 3 = Isothermality (Bio 2/Bio 7) (×100). 

Bio 4 = Temperature Seasonality 
(standard deviation ×100). 

Bio 5 = Max Temperature of Warmest 
Month. 

Bio 6 = Min Temperature of Coldest 
Month. 

Bio 7 = Temperature Annual Range (Bio 
5 – Bio 6). 

Bio 8 = Mean Temperature of Wettest 
Quarter. 

Bio 9 = Mean Temperature of Driest 
Quarter. 

Bio 10 = Mean Temperature of Warmest 
Quarter. 

Bio 11 = Mean Temperature of Coldest 
Quarter. 

Bio 12 = Annual Precipitation. 

Bio 13 = Precipitation of Wettest Month. 

Bio 14 = Precipitation of Driest Month. 

Bio 15 = Precipitation Seasonality 
(Coefficient of Variation). 

Bio 16 = Precipitation of Wettest Quarter. 

Bio 17 = Precipitation of Driest Quarter. 

Bio 18 = Precipitation of Warmest Quarter. 

Bio 19 = Precipitation of Coldest Quarter. 

Evaluation of the performance of new 
bioclimatic variables 

Two statistical tests were implemented on 
the surface bioclimatic variables of the 
WorldClim and the calculated surface 
bioclimatic variables. One hundred spatially 
random points were sampled over the study 
area to implement the tests. First, the paired 
sample T-test was used to determine whether 
the mean difference between two sets of 
observations was zero. If there was no 
difference between the mean of the 
WorldClim bioclimatic variables and the 
calculated bioclimatic variables then the null 
hypothesis H0: µ = 0. Second, testing the 
significance of the correlation coefficient was 
used to evaluate the relationship between the 
two datasets, i.e. the correlation between the 
WorldClim and the calculated variables. The 
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null hypothesis (H0) of the test was that the 
correlation coefficient was not significantly 
different from zero (the coefficient is close to 
zero, or no correlation between the two 
datasets). The two tests complemented one 
another to assess the quality of 19 constructed 
bioclimatic variables. 

In addition, another test of the paired 
sample t-test was applied to compare 
differences between the station data with the 
interpolated data and the station data with the 
WorldClim data. The data set used to test was 
from 21 stations which account for about 2/3 
of the total stations recording both 
precipitation and temperature. The test was 
performed by interpolating with and without 
these 21-station data, whose outcomes were 
tested with the station data. This helps to 
appraise how the interpolation models work 
and to see the similarity between the 
WorldClim data and the local station data. 

The Open Source Geographic 
Information System, QGIS version 3x 
(QGIS, 2019) that supports functions on 
vector and raster analysis as well spatial 
interpolation was used to process and 
analyze all surface datasets. Moreover, 
statistical calculations of this study were 
done in worksheet MS Excel@ 365 with 
data analysis Add-in. 

RESULTS AND DISCUSSIONS 

High spatial resolution surface bioclimatic 
variables of CH-SC 

Nineteen bioclimatic variables with a high 
resolution of 0.00226° (about 250 m) for the 
CH-SC (Fig. 3) were constructed from 
monthly surface temperature (average, 
maximum, minimum) and monthly surface 
precipitation based on the WorldClim data for 
the period of 1970−2000 and the local dataset 
for the period of 1991−2015. 

 

 

 

Figure 3. Nineteen bioclimatic variables, Bio 1 to bio 19 from left to right and upper to lower 
(in group a, b, c, d top-down). Colour bars from dark blue to dark red display values ranging 

from the lowest to the highest values of bioclimatic variables 
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Figure 3. Nineteen bioclimatic variables, Bio 1 to bio 19 from left to right and upper to lower 
(in group a, b, c, d top-down). Colour bars from dark blue to dark red display values ranging 

from the lowest to the highest values of bioclimatic variables (next) 

 

Temperature and precipitation variables 

from the regression models 

Temperature 

We run the multiple regression of average, 
minimum, and maximum monthly 
temperatures with two cases: The first case 
(only the local datasets): using local data only 
with 31 stations. The coefficient of correlation 
(R) was high (Table 1) exceptionally some 
months of maximum temperature were very 
low, resulting in all regression p-values below 
0.05. p-values of independent variables highly 
fluctuated for all cases of months (higher or 
lower than 0.05 in some months). There was 
only the ALT with values below 0.05 for all 
months. Standard errors of intercept and 
independent variables were in the high range. 
VIFs values were in an acceptable range. In 
general, outcomes of the multiple regression 

analysis with the four independent variables for 
only temperature stations showed instability of 
estimated models that could affect predictive 
temperature values, making them lower or 
higher than the actual temperature for 
minimum, average, and maximum values in the 
study area. Consequently, these were not used 
for further analysis. This limitation is due to the 
uneven distribution of stations horizontally as 
well as in altitude and makes constraints when 
using only climate station data for spatial 
interpolation, which was mentioned above in 
the data section. 

The second case (combined WorldClim 
and local datasets): The total number of points 
used for the analyses was 24,654 (n = 24,654). 
The test results indicate a significantly high 
correlation between the monthly average, 
minimum and maximum temperatures and 
ALT, LAT, LONG and DC with R being 
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between 0.91 and 0.97, p-values approximately 
close to zero and VIFs between 1.29 and 1.76. 
With low variation and low standard errors, the 
lower and upper 95% confidence intervals 
(CIs) of the coefficient of each of four 
independent variables and the intercept values 
were close to coefficient values. 

The temperature estimated from the 
regression model does not exceed the actual 
record range; for example, the estimated Min 
Temperature of Coldest Month in Bio 6 
ranges between 4 oC and 21 oC within the 
altitudes of 7 m to 2,598 m matches well with 
those recorded at 1,508 m at Da Lat Station. 

 
Table 1. Results of tests for multiple regression analysis for monthly average, minimum, 

maximum temperature values using station data only (n = 31) 
Monthly 

temperature 
R 

Regression p-

value, α = 0.05 

p-value for intercept, ALT, 

LAT, LON, DC (α = 0.05) 

Standard 

error 
VIF 

Average 
0.96–

0.99 
< 0.05 

ALT < 0.05. 

0.05 > intercept, LAT, LON, DC 

> 0.05 

High 

range 
1.05–2.4 

Minimum 
0.88–

0.94 
< 0.05 

ALT < 0.05. 

Intercept, DC > 0.05; LAT, 

LON mostly > 0.05 

High 

range 
1.05–2.4 

Maximum 
0.37–

0.84 
< 0.05 

ALT Apr-Dec < 0.05; Intercept, 

LAT, LON, DC (mostly) > 0.05 

High 

range 
1.05–2.4 

 
Precipitation 

The regression analysis of precipitation 
(97 stations) with the three independent 
variables of ALT, LON and LAT and the 
dependent variable of the monthly 

precipitation has VIFs ranging from 1.07 to 
1.14 indicating low collinearity is while the 
coefficient correlation R of monthly 
regression ranges from 0.53 to 0.86 with p-
values of zero showing their statistical 
significance (Table 2). 

 
Table 2. Coefficient of correlation R and p-values for monthly precipitation 

Value Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

R 0.64 0.62 0.65 0.81 0.86 0.81 0.78 0.76 0.72 0.53 0.72 0.69 

p-value 0 0 0 0 0 0 0 0 0 0 0 0 

 
The total number of points used for the 

analysis was 27,683 (n = 27,683). The 
coefficients of regression variables (ALT, 
LON, LAT) have monthly differences 
presenting a seasonality of precipitation. The 
amount of precipitation of each month is 
different from each other, which is affected by 
other factors like orography, elevation, wind 
and location. All standard errors of 
coefficients were low, and the upper and 
lower 95% CIs of the three independent 
variables are close to coefficient values. The 
regression function with three coefficients of 
the predictive variables and residual analysis 
was applied for spatial interpolation to yield 
monthly surface precipitation models. 

Comparison and evaluation 

Table 3 displays the results of the tests for 
mean difference and the correlation 
coefficient between 19 variables of 
WorldClim and those from the combined 
WorldClim-Station data. There was a small 
mean difference between the paired variables 
of the two datasets except bioclimatic variable 
12 (total annual rainfall). In terms of 
temperature, the dissimilarity of variable pairs 
of Bio 3, Bio 8 and Bio 9 are relevant to the 
monthly maximum and minimum 
temperatures and the mean temperature of the 
wettest and driest quarters. The mean 
difference of temperature-related bioclimatic 
variables is low, being less than 1 oC, for Bio 
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1 to Bio 11 but Bio 3 (Isothermality, 
calculated from Bio 2 and Bio 7) and Bio 4 
(Temperature seasonality, standard deviation 
of the monthly mean temperatures). The mean 
difference of precipitation-related bioclimatic 
variables is also low but Bio 12 (annual 
precipitation). Differences of monthly rainfall 
bring on a discrepancy of total annual rainfall 
(Bio 12), where the yearly mean rainfall of 

local data is higher than 300 mm compared to 
the WorldClim data, and the rainfall of the 
warmest quarter (Bio18) of the local data is 
nearly 60 mm, which is higher than that of 
WorldClim. Differences in Bio 13, 14, 15, 17 
and 19 are found for the wettest, driest months 
and coldest quarters. These are the periods 
with the highest, lowest rainfall and lowest 
temperature of the year, respectively. 

 
Table 3. Paired sample t-test for difference and the correlation coefficient significant test  

for 19 Bioclimatic variables extracted from the WorldClim data and interpolated data.  
Bold numbers indicate statistical significance 

Bio 

Paired sample t-test for difference (Mean WorldClim data 

vs. mean interpolated data), n = 100, df = 99, α = 0.05, two 

tails, t-critical value = 1.984. Hypothesis H0: µ = 0 

t-test for correlation significance, 

n = 100, df = 99, α = 0.05, two 

tails. Hypothesis H0: ρ = 0 

Mean 

WorldCli

m data 

Mean 

interpolate

d data 

Mean t-value p-value R t-value p-value 

1 23.773 23.786 -0.013 -0.168 0.867 0.956 32.251 0 

2 7.607 7.474 0.132 1.687 0.095 0.735 10.723 0 

3 57.989 56.294 1.694 3.123 0.002 0.907 21.308 0 

4 182.391 181.116 1.276 0.558 0.578 0.947 29.120 0 

5 30.108 30.057 0.051 0.492 0.624 0.924 23.870 0 

6 16.796 16.706 0.090 0.948 0.345 0.942 27.670 0 

7 13.312 13.351 -0.039 -0.342 0.733 0.806 13.468 0 

8 24.025 24.252 -0.227 -2.925 0.004 0.929 24.851 0 

9 22.187 21.924 0.263 2.837 0.006 0.948 29.606 0 

10 26.061 25.948 0.112 1.169 0.245 0.953 31.115 0 

11 20.895 20.850 0.045 0.632 0.529 0.953 31.139 0 

12 1520.421 1834.798 -314.378 -35.117 1.1E-57 0.982 50.769 0 

13 356.877 357.886 -1.009 -0.540 0.591 0.984 55.389 0 

14 16.176 16.140 0.036 0.188 0.851 0.988 62.191 0 

15 77.411 77.064 0.347 1.594 0.114 0.981 50.195 0 

16 1018.241 1023.362 -5.121 -0.836 0.405 0.977 44.907 0 

17 56.344 57.190 -0.846 -1.345 0.182 0.986 59.060 0 

18 418.189 474.186 -55.997 -4.431 2.4E-05 0.815 13.899 0 

19 130.366 133.696 -3.330 -0.947 0.346 0.954 31.599 0 

 
These dissimilarities are minor and keep 

the spatial distribution pattern of the climate 
of the study area as the known climate type of 
this region. This is because the combined 
local climatic and WorldClim data for 
interpolation resulted in slight changes. 

Though there are minor differences, the 
general pattern of climatic variables, 
represented by bioclimatic variables, of the 
two datasets are similar as reflected in the 

coefficient of correlation being above 0.8 (R = 
0.73 in Bio 2 only) and significant tests with 
high t-values were and low p-values (with a 
significant level of 95% and α = 0.05). 

Repeating the paired sample t-test with 
synoptic data of the 21 stations is presented in 
Table 4. The results show that there was a 
slight difference in temperature among the 
first three datasets, but it was not statistically 
significant. This indicates that the multiple 
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linear regression used for the temperature 
interpolation is a proper statistical model for 
generating the surface temperature variables. 
Comparing the precipitation of the three 
datasets shows a statistically significant 
difference for 100 random samples; this is just 
like that found in the previous test. However, 

this examination also reveals a smaller 
difference between the interpolated 
precipitation data and the station data than 
that between the WorldClim data and the 
station data. This implies that the interpolation 
has been improved and is close to the 
observed data. 

 
Table 4. Paired sample T-test for annual precipitation (Bio 12) and mean annual temperature 

(Bio 1) with and without the 21-station data. n = 21, df = 20, two tail, α = 0.05,  
t-critical = 2.0859. Hypothesis H0: µ = 0 

Station 

Interpolation with 

World bioclimatic 

data only 

Interpolation  

with combined 

datasets 

World 

bioclimatic  

data 

Station data 

Annual 

Prep. 
Mean 

Annual 

Prep. 
Mean 

Annual 

Prep. 
Mean 

Annual 

Prep. 
Mean 

An Khe 1508 24.074 1597 24.075 1535 24.41 1598 22.94 

Ba To 1694 25.741 3667 25.742 1784 25.98 3551 25.45 

Ban Me Thuat 1651 24.302 1866 24.302 1685 24.32 1862 23.89 

Bao Loc 2470 22.664 2923 22.663 2575 21.11 2923 21.76 

Cam Ranh 1052 26.232 1394 26.234 1091 26.77 1393 27.22 

Da Lat 1750 18.917 1837 18.914 1787 18.59 1839 18.05 

Da Nang 1993 25.716 2248 25.718 2052 26.46 2247 25.97 

Dak To 2103 23.236 1807 23.236 2105 23.59 1809 22.6 

EaKmat 1616 23.889 1933 23.889 1623 23.16 1934 23.53 

Hoai Nhon 1645 25.872 2212 25.874 1676 26.5 2210 26.22 

Kon Tum 1881 23.683 1907 23.683 1905 24.67 1905 23.95 

Lien Khuong 1604 21.691 1603 21.690 1667 19.72 1602 21.36 

Mdrak 1302 24.115 2233 24.115 1311 24.15 2230 24 

Nha Trang 1083 26.208 1490 26.210 1195 26.81 1490 26.94 

Phan Rang 1009 26.405 927 26.406 1007 27.11 927 27.2 

Pleiku 2390 22.496 2155 22.496 2453 22.73 2157 22.06 

Quang Ngai 2025 25.763 2529 25.765 2090 26.33 2530 26.09 

Qui Nhon 1497 25.919 1869 25.921 1472 26.7 1867 27.27 

Son Hoa 1613 26.034 1865 26.035 1366 26.7 1866 26.12 

Tam Ky 1961 25.793 2911 25.795 2007 26.25 2912 25.91 

Tuy Hoa 1869 26.070 2072 26.071 1457 27.04 2076 26.89 

Mean 1701 24.515 2050 24.516 1707 24.719 2044 24.544 

Mean 

difference  
-343 -0.028 +6 -0.028 -337 

+0.17

5 
  

t-calculated -3.349 -0.195 1.009 -0.191 -3.326 1.204   

p-calculated 0.003 0.846 0.325 0.850 0.003 0.242   
Notes: Italic numbers: significant difference; Bold numbers: Insignificant difference. 

 
Performance of high spatial resolution 

As illustrated, the grid data of the 
Bioclim 1 of 0.00833o resolution overlaid on 

the raster of the interpolated Bio 1 of 
0.00226o displayed more details on 
temperature on the Ngoc Linh Mountaintop 
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(107.979oE, 15.067oN) (Fig. 4a). The spatial 
distribution of the mean annual precipitation 
(Bio 12) is characterized as a trend of 
decrease from west to east and increase from 
south to north of the CH-SC, which is 
specifically along the coastal zone (Fig. 4b). 

Figure 4b also displays a difference of 
precipitation between the interpolated data 
and the WorldClim data along with the cross 
profile of topography, and the interpolated 
data show less smooth change than do the 
WorldClim data. 

 

 

Figure 4. (a) Gridded cells of the Bioclim 1 of 0.00833o overlaid on a raster of the interpolated 
Bio 01 of 0.00226o. Numeric values on grids are the temperature of the 0.00833o cell (the 

WorldClim data), and the colour is the temperature of the 0.00226o cell (the new interpolated 
data). (b) Cross profile of precipitation (the interpolated data and WorldClim data) and 

topography, at the latitude of 13oN from the Srepok River (at the border of Vietnam and 
Cambodia, altitude 176 m) to Tuy Hoa City (altitude 7 m) (distance appr. 200 km) 

 
CONCLUSIONS 

Bioclimatic variables were derived by the 

combination of the WorldClim data (0.00833o 
resolution) with the local climate observed 

data to construct local climate factors of 
higher spatial resolution using multiple linear 

regression and spatial interpolation. Effective 

and low error regression models were 
obtained with high correlation and statistical 

significance (R = 0.91-0.97 and p-values close 
to zero). The 19 bioclimatic variables of the 

CH-SC region with the spatial resolution of 
0.00226o (~250 m, or one cell covers an area 

of 1/16 km2) have been generated and these 

can be utilized for other localized SDMs 
instead of using a coarse spatial resolution 

from the WorldClim database. 
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