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ABSTRACT 

Herbicides with 2,4-dichlorophenoxyacetic acid (2,4D) has been commonly used to control 

weeds and widely detected in environments. In this study, biodegradating activity of 

Pseudomonas fluorescens HH on 2,4D and 4-chlorophenol (4CP) in soil was carried out. The 

inoculation with Pseudomonas fluorescens HH in soils increased the degradation of 4CP and 

2,4D by from 47.0% to 51.4% and from 38.4% to 47.4%, respectively, compared to the 

degradation by autochthonous microorganisms. Pseudomonas fluorescens HH could degrade 

well 2,4D and 4CP in various soils, but the most efficient chemical removal was observed when 

they were in the loamy soil. Moreover, the efficiency of chemical degradation was significantly 

affected by the moisture contents with the highest performance of degradation at 10 and 20% soil 

moisture. Also, the addition of nitrogen (N), phosphorous (P) and potassium (K) stimulated the 

dissipation rates. The determination of degradation pathway for 2,4D in Pseudomonas 

fluorescens HH indicated that 2,4-dichlorophenol (2,4DCP) and 4CP were formed as metabolites. 

Keywords: Pseudomonas fluorescens HH, 2,4-dichlorophenoxyacetic acid, 4-chlorophenol, 

loamy soil, degradation. 
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INTRODUCTION 

Herbicides including 2,4D are commonly 
used to control weeds. Because of high 
agricultural application, 2,4D has been widely 
detected in environments. For example, the 
compound has been detected in groundwater 
(Williams et al., 1988; Kolpin et al., 2000), 
surface water (Frank and Logan, 1988), 
wastewater treatment plants (Hope et al., 2012), 
sediment (Konasewich et al., 1978; Klecka et 
al., 2010) and soil (Webber and Wang, 1995). 

2,4D has been classified as a hormonal 
herbicide with level II by the World Health 
Organization (WHO). This chemical causes 
depression of the central nervous system and 
damage to the liver and kidneys of human and 
animals (Moody et al., 1992; Duffard et al., 
1996; Mattsson et al., 1997; Charles et al., 
2001; Kwangjick et al., 2001; Kim et al., 
2005). While 2,4D acts as an active auxin at 
low concentrations, it causes changes of the 
normal pattern resulting in the death of plants 
at high concentrations (Harborne, 1988). 

2,4D is moderately mobile in soils, and 
the mobility depends on soil characteristics 
(Ordaz-Guillen et al., 2014). 2,4D exists 
predominantly as an anion which is adsorbed 
to positively charged sites on the edges of clay 
particles in soil preventing its cellular uptake 
and biodegradation (McGhee et al., 1999). 
The degradation of 2,4D in soil has been 
investigated in various laboratories (Jacobsen 
& Pedersen, 1991; Bryant, 1992; Balajee & 
Mahadevan, 1993; Entry et al., 1996; Chang 
et al., 1998; Cycoń et al., 2011; Musarrat et 
al., 2000; Chang et al., 2016; Xia et al., 2017). 
However, the degradation of 2,4D in various 
soil with different physico-chemical 
properties has not been conducted extensively. 

Although 2,4D and also 4CP may be 
remediated by physical and chemical 
methods, the degradation by microorganisms 
is a major process for cleaning up the 
compounds. The biotransformation of 2,4D 
usually produced chlorophenols as 
intermediates (Bryant 1992; Chang et al., 
1998; Robles-González et al., 2006; Wu et al., 
2010; Yang et al., 2017). Chlorophenols are 

suspected to be carcinogens and mutagens, so 
they are also listed as hazardous substances 
(WHO, 1989). The use in industries and 
agricultural herbicides resulted in serious 
chlorophenols contamination in soil (Nowak 
& Mrozik, 2018). 

P. fluorescens HH which can aerobically 
utilize 2,4D as a sole carbon and energy 
source was isolated and its degradation ability 
in liquid medium was determined (Nguyen 
Thi Oanh et al., 2018). In this study, the 
chemical degradation of 2,4D and 4CP by P. 
fluorescens HH was investigated for various 
soil types with different components. Also, 
the effects of N, P, K and moisture content on 
the bioremediation of highly contaminated 
soils by P. fluorescens HH were examined. 

MATERIALS AND METHODS 

Bacteria used for chemical degradation 

P. fluorescens HH isolated from soil can 
utilize 2,4D as the sole carbon (Nguyen Thi 
Oanh et al., 2018). The isolate has been 
deposited in the Culture Collection at the 
Center for Biochemical Analysis (Dong Thap 
University, Vietnam) under the deposition 
number DUCOANH2015-7C. 

Degradation of 2,4D and 4CP in 
contaminated soils 

The degradation of 2,4D and 4CP in soil 
was carried out according to the methods in a 
previous report (Duc, 2017) with slight 
modification. Soil samples were taken from a 
depth of 10–50 cm in some places in Dong 
Thap Province, Vietnam. Soil samples were 
then air-dried at room temperature 
(approximately 30

o
C) until the weight became 

constant, then they were sieved through 2 mm 
mesh to remove large debris before assaying 
chemical components. The physical and 
chemical properties of each soil sample 
adjusted to unit dry soil weight are presented 
in table 1. The soil types were classified based 
on the Soil Survey Division Staff (USA). 
Before the experiments, the concentrations of 
2,4D and 4CP which might contaminate soils 
by farmers were analyzed, but no such 
chemicals were detected in all soil samples. 
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Table 1. Physico-chemical characteristics of four dry soil samples 

Soil texture  Loamy sand Sandy loam Sandy clay loam Loamy soil 

Granulometric properties (%) 

Coarse sand (> 0.2 mm) 7.5 5.4 5.5 0.7 

Fine sand (0.2–0.02 mm) 77.4 65.5 33.7 34.4 

Silt (0.02–0.002 mm) 7.7 13.1 25.5 40.4 

Clay (< 0.002 mm) 7.9 16.0 35.3 24.5 

Agrochemical properties 

pH 6.3 6.4 6.1 6.2 

Total C (%) 1.3 2.7 3.5 4.4 

Total N (%) 0.08 0.17 0.30 0.44 

P2O5 (ppm) 33.7 55.6 34.4 28.8 

K2O (ppm) 6.6 30.1 18.8 8.4 

 
200 g of each soil type were placed in a 

500-mL glass jar covered with aluminum foil. 
The soil samples were spiked with 100 mg 
2,4D or 4CP per 1.0 kg dry soil. Then, the soil 
samples were inoculated with the cell 
suspension of P. fluorescens HH to give an 
initial population of 10

6
 cells/g dry soil. The 

jars were then incubated at room temperature 
(approximately 30

o
C) in the dark. To 

determine chemical degradation in various 
soil types and to evaluate the effects of NKP 
on degradation, soil moisture was maintained 
at 20% of the water-holding capacity by 
sprinkling sterile water. For the experiments 
on the effects of the moisture content on 
substrate degradation, soil moisture was 
adjusted from 5% to 40%. The jars were 
manually shaken every 5-days to enhance soil 
O2 availability. The controls without 
inoculation with P. fluorescens HH were run 
in parallel. The bacterial inoculum was 
prepared by cultivation of P. fluorescens HH 
in LB medium for 12 hr. The culture was 
centrifuged for 5 min at 12,000 rpm, washed 
twice with phosphate buffer (50 mM, pH 7.0) 
and resuspended in sterile water. 

To determine chemical degradation, 
chemicals were extracted from 5 g soil with 
15 mL methanol (> 99%) twice (Cotterill 
1980). The extract was concentrated and 
filtered through a 0.22-µm syringe filter. The 
mean recovery of 2,4D from loamy sand, 
sandy loam, sandy clay loam and loam was 

96.4%, 95.5%, 93.3 and 97.7%, respectively. 
4CP recovered from these soils was 95.5%, 
93.3%, 91.4 and 96.3%, respectively. 

Effects of NPK on degradation of 2,4D and 
4CP 

The effects of NPK on degradation of 
2,4D and 4CP were conducted according to 
the methods described by McGhee et al. 
(1999). Soil samples (200 g of each type) 
were placed in a 500-mL glass jar and 
amended with nitrogen (NH4NO3, 2.5 mg/g), 
phosphorus (NaHPO4.2H2O, 3.5 mg/g) and 
potassium (K2CO3, 4.5 mg/g) which are the 
same amount and ratio of N, P and K of the 
commercial combined NPK fertilizer. 
Samples were taken after 15 days of 
incubation to determine the degradation of 
chemical degradation. 

Analytical methods 

The 2,4D and 4CP concentrations were 
determined using HPLC equipped with a 4.6 
mmU25 cm Ultrasphere C18 column 
(Beckman). The mobile phase was the 
mixture of methanol, water and acetic acid 
(40/57/3, v/v) which run at a flow rate of 1.0 
mL/min. GC-MS with HP-5MS column (30 m 
× 0.25 mm × 0.25 mm; Agilent, Palo Alto, 
CA, USA) was used to determine metabolites 
of 2,4D degradation. The UV detection was at 
283 nm. The process was carried out using an 
electron ionization (EI) mode (70 eV) with an 
Agilent gas chromatograph equipped with an 
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MS detector (5975C). Temperatures of the 
injection port and the detector were controlled 
at 250

o
C and 280

o
C, respectively. The 

temperatures of the program were held at 
50

o
C for 7 min, raised 5

o
C per min to 280

o
C 

and finally held at this temperature for 5 min. 
During the operation process, Helium  
(1 mL/min) was used as the carrier gas. The 
HPLC and GC-MS results were compared 
with retention times and authentic standards 
of known compounds. 

Statistical analysis 

Data were calculated and shown as the 
mean ± one standard deviation from at least in 
triplicate experiments. The SPSS software 
program version 22.0 was used to analyze 
variance, and significant differences (p < 
0.05) were calculated using Duncan’s multiple 
range test. 

RESULTS AND DISCUSSION 

Degradation of 2,4D and 4CP in various 
soils 

The degradation of 2,4D and 4CP was 
carried out in various soil types which 
represent the soil types commonly used for 
cultivation in the Mekong Delta. The 
remediation rates and adaptation ability of P. 
fluorescens HH to different constituents were 

compared in those soil samples. The 
degradation of the substrates was carried out 
in sterile and non-sterile soils. Table 2 showed 
that the degradation rates of 2,4D in soils 
inoculated with bacteria were, regardless of 
the types of soil samples, significantly higher 
than those in soils without inoculation. The 
degradation rates of 4CP and 2,4D by P. 
fluorescens HH were from 47.0 to 51.4% and 
from 38.4% to 47.4% higher compared to the 
degradation in control by native 
microorganisms, respectively (table 2). 
Significantly higher amounts of 2,4D were 
degraded in non-sterile soils compared with in 
sterile soils illustrating that 2,4D and 4CP 
were also degraded by indigenous 
microorganisms, and P. fluorescens HH 
cooperated well with autochthonous 
microorganisms. The 2,4D degradation by 
indigenous microorganisms in soils was 
reported previously (Comeau et al., 1993; 
McGhee et al., 1999). The biotic and abiotic 
factors of soils affect the success of 
biodegradation. The survival and growth of 
inoculated bacteria play a key role in 
bioaugmentation. The physico-chemical 
environmental parameters of soils also 
strongly influence the mineralization process 
of organic contaminants. 

 

Table 2. Degradation of 2,4D and 4CP in various soil types and the roles of inoculation of P. 

fluorescens HH on degradation. Soils were inoculated with 100 mg/kg of chemical substrates. 

Soil samples were incubated for 15 days 

Soils Substrates 
Substrate degradation (%)

* 

Loamy sand Sandy loam Sandy clay loam Loamy soil 

None-inoculated soils 

Sterile soil 
2,4D 4.8 ± 0.9

aA
 5.5 ± 0.8

aA
 7.8 ± 1.0

aB
 5.5 ± 1.0

aA
 

4CP 3.9 ± 0.5
aA

 4.2 ± 0.6
aA

 8.8 ± 1.1
aC

 6.4 ± 1.2
aB 

None-

sterile soil 

2,4D 10.3 ± 1.6
aA

 10.2 ± 1.4
aA

 14.5 ± 2.6
aB

 17.8 ± 3.2
bC

 

4CP 8.4 ± 1.8
aA

 13.4 ± 1.7
aB

 18.0 ± 2.2
aC

 21.1 ± 3.5
bC

 

Soils inoculated with bacteria 

Sterile soil 
2,4D 48.7 ± 5.9

bA
 55.7 ± 6.0

bAB
 60.7 ± 7.4

bAB
 65.2 ± 8.2

cC
 

4CP 55.5 ± 6.4
bcA

 60.4 ± 6.9
bcAB

 65.7 ± 7.5
bcAB

 72.5 ± 7.0
cdB

 

None-

sterile soil 

2,4D 53.7 ± 6.2
bcA

 65.0 ± 6.4
cdAB

 71.4 ± 7.9
cdB

 73.4 ± 6.2
cdB

 

4CP 58.4 ± 6.5
cA

 70.4 ± 7.9
dAB

 77.0 ± 8.4
dB

 80.7 ± 5.7
dB

 
Note:

 *
Different capital superscript letters (A, B and C) and small superscript letters (a, b, c and d) 

indicate statistically significant differences (p < 0.05) among treatments within a line and a column, 

respectively. 
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The soil texture and soil nutrients can 
affect the degradation rates. The 
degradation was effective in loamy soil, 
while it was low in loamy sand (table 2). 
The nutrients available in soils probably 
accounted for the degradation rates. The 
loam and sandy clay loam with higher 
carbon and nitrogen (table 1) resulted in 
higher degradation rates. Phenol 
degradation by Pseudomonas sp. JS150 was 
significantly faster in soils with higher 
organic matter content (Mrozik et al., 2011). 
Clay with fine grains has low permeability 
and retarded oxygen transport in the soil. 
However, the degradation rate in the sandy 
clay loam in this study was not low 
compared to the rates in other soil types. 
This probably is because sand grains in this 
soil enhanced the permeability. Related to 
this, the clay content in soil did not affect 
the degradation of 2,4D (Boivin et al., 
2005). 

Effects of NPK on 2,4D and 4CP 

degradation 

To enhance crop yield, farmers not only 
use fertilizers, but also use herbicides. The 
main components of inorganic fertilizers are 
N, P and K. The degradation of 2,4D and 4CP 
with the supplementation of these nutrients 
shown in table 3 was higher than those in soils 
without supplementation of nutrients 
presented shown in table 2. Nutrients may be 
needed to manipulate soil conditions to 
enhance inoculum survival, proliferation and 
activities of microorganisms (Greer & 
Shelton, 1992). Nevertheless, the degradation 
of 2,4D and 4CP was not complete in this 
study. 2,4D may be undergone the adsorption 
and/or reactions with clays and humics in soil 
reducing bioavailability to microorganisms 
(Ogram et al., 1985; Greer & Shelton, 1992; 
McGhee et al., 1999) probably resulting in 
incomplete biodegradation. 

 

Table 3. The degradation of 2,4D and 4CP with the supplementation of NPK 

Substrates 
Substrate degradation (%)

* 

Loamy sand Sandy loam Sandy clay loam Loamy soil 

None-inoculated soils 

2,4D 17.7 ± 2.7
aA

 20.3 ± 3.6
aA

 22.3 ± 3.2
aAB

 24.4 ± 5.5
aB

 

4CP 27.0 ± 3.8
aA

 28.3 ± 3.8
aA

 28.3 ± 3.8
aA

 33. ± 3.7
bA

 

Soils inoculated with bacteria 

2,4D 62.3 ± 7.4
bA

 73.3 ± 7.2
bAB

 80.3 ± 5.0
bBC

 90.4 ± 3.0
cC

 

4CP 67.3 ± 7.3
bA

 75.3 ± 7.4
bAB

 85.0 ± 6.6
bBC

 92.6 ± 2.2
cC

 

Note:
 *

Different capital superscript letters (A, B and C) and small superscript letters (a, b, c and d) 

indicate statistically significant differences (p < 0.05) among treatments within a line and a column, 

respectively. 

 
Effects of soil moisture on the degradation 
of 2,4D and 4CP by P. fluorescens HH 

The loamy soil which showed relatively 
effective degradation described above was 
used in this experiment. The optimum 
moisture value of soils affecting on 
biodegradation depends on pore size 
distribution and soil texture. In this 
experimental condition using loamy soil, the 
degradation rates of 2,4D and 4CP was 
highest at the 10 and 20% of moisture 

contents (Fig. 1). The degradation rates of 
4CP and 2,4D in loamy soil with 40% 
moisture content was slightly lower than those 
in 10 and 20% moisture but statistically not 
different with each other. The low level of 
moisture content (5%) and excess water (more 
than 20%) decreased the degradation 
efficiency. The restriction of water content 
which resulted in low degradation might be 
due to the reduction of microbial activities 
and chemical diffusion. Meanwhile, the 
excess water in soil may interrupt oxygen 
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diffusion and produce an unwanted leachate 
resulting in the decrease of degradation 
(Schjønning et al., 2011). For 4CP 
degradation, Cho et al., (2000) reported that 
about 10 days are required to reach complete 
degradation by indigenous microorganisms at 
the initial concentration of 60 mg/kg in loamy 
sand with the optimal moisture contents of 10 
and 15%. In another report, the inoculation 
with Pseudomonas sp. CF600 increased 4CP 
degradation in soil (Nowak & Mrozik, 2018). 

 

 

Figure  

 

Figure 1. Effects of moisture content on 

degradation of 2,4D ( ) and 4CP ( ) in sterile 

loamy soil inoculated with P. fluorescens HH. 

Individual chemicals were supplemented at 

100 mg/kg dry soil 

 
Degradation pathways for 2,4D in 
Pseudomonas fluorescens HH 

The degradation products of 2,4D in 
loamy soil were analyzed based on the results 
of HPLC and GC/MS profiles. During the 
transformation of 2,4D, a product was 
proposed to be 2,4DCP (m/z 162, 164, 98, 63 
in GC/MS), suggesting that the side-chain 
removal was the first step of the process. 
Another metabolite with HPLC retention time 

of 14.2 min and m/z 128, 130, 64 in GC/MS 
analyses was identified to be 4CP. The 
concentrations of 4CP produced during the 
degradation of 2,4D were always higher than 
those of 2,4DCP (Fig. 2). 4CP is assumed to 
be oxidized further; however, other 
metabolites such as phenolic compounds were 
not detected in soil samples probably because 
their concentrations were so small or they 
were immediately transformed in the 
degradation process. From these results, the 
plausible complete degradation pathway for 
2,4D is proposed in figure 3. 

As for the supportive evidence, P. cepacia 
BRI6001 degraded 2,4D to produce 2,4DCP 
(Greer et al., 1990). Similarly, Achromobacter 
sp. LZ35 transformed 2,4D to 2,4DCP, 
although 4CP was not detected as the 
degradation product (Xia et al., 2017). In 
another study, 2,4D was transformed to 4CP 
by Azotobacter sp. SSB81 (Gauri et al., 2012).  

  

Figure 2. Degradation of 2,4D by 
Pseudomonas fluorescens HH in loamy soil 

and the formation of 2,4DCP and 4CP  
during the degradation 

 

 

Figure 3. Proposed the degradation pathway for 2,4D in Pseudomonas fluorescens HH 
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CONCLUSION 

P. fluorescens HH augmented degradation 
of 2,4D and 4CP in four soil types with 
different characteristics. The loamy soil was 
favorable for the degradation of 2,4D and 
4CP. Soil conditions such as moisture and 
nutrients also affected the degradation of 
those chemicals by P. fluorescens HH. 2.4D is 
supposed to be degraded to 2,4DCP and then 
4CP. This study provides knowledge about 
better conditions to augment biodegradation 
by P. fluorescens HH. 
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