Granulated blast furnace slag as a supplement enhancing fire resistance of Portland cement mortar

Authors

  • Thi Duy Hanh Le Department of Chemical Engineering Technology, HCMC University of Technology and Education, No.1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Viet Nam
  • Le Duy Pham Van Cat Construction Co, LTD, 84A/36 Tran Huu Trang, Phu Nhuan District, Ho Chi Minh City, Viet Nam
  • Van Vinh Pham Department of Chemical Engineering Technology, HCMC University of Technology and Education, No.1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16388

Keywords:

Granulated blast furnace slag, compressive strength, high temperature resistance

Abstract

Using steel slag in the cement industry has been considered a green recycling solution to the solid waste problem. Granulated blast furnace slag (GBFS), in fact, is used as an additive to  counteract  the  sulfate  attack  of  Portland  cement;  however,  its  ability  to  undergo  fire  or  heat exposure  has  not  been  highlighted  yet.  Therefore,  this  study  focuses  on  compressive  strength behaviour  at  high  temperature  along  with  workability  of  cement  paste  of  cement  containing GBFS. Here, a set of blended mixture prepared with OPC was replaced by GBFS at 10, 20, 30, 40  wt.%.Setting  time  of  pure  OPC  and  blended  OPC  and  GBFS  was  carried  out  to  evaluate workability of all mixtures. After 28 days of curing, compressive strength of samples exposed  to heat  at  200,  400  and  600 C  was  measured.  Along  with  that,  the  mass  loss  of  the  sample  to predict  thermal  resistance  was  analyzed  by  thermogravimetric  analysis  (TGA);  moreover, microstructure of hardened samples in terms of mineral composition, distribution was analyzed by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Results of the conducted study  showed  that GBFS  addition  into OPC  could  enhance  fire  resistance  through  the  slight increase  in  compressive  strength  compared  to  the  OPC one  at  600C  and  the  mass  loss; moreover,  the  blended  cement  containing  different  amount  of  GBFS  maintain  workability  of cement paste.

Downloads

Download data is not yet available.

References

Pacheco-Torgal F., Abdollahnejad Z., Camões A. F., Jamshidi M., and Ding Y. - Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?, Constr. Build. Mater. 30 (2012) 400-405. DOI: https://doi.org/10.1016/j.conbuildmat.2011.12.017

Hager I. - Behaviour of cement concrete at high temperature, Bulletin of the Polish Academy of Sciences 61 (1) (2013). DOI: https://doi.org/10.2478/bpasts-2013-0013

Lublóy É., Kopecskó K., Balázs G. L., Restás Á., and I. Szilágyi M. - Improved fire resistance by using Portland-pozzolana or Portland-fly ash cements, J. Therm. Anal. Calorim. 129 (2) (2017) 925-936. DOI: https://doi.org/10.1007/s10973-017-6245-0

Stonis R., Pundiene I., Antonovi V., Kligis M., and Spudulis E. - Study of the effect of replacing microsilica in heat-resistant concrete with additive based on metakaolin, Refractories and Industrial Ceramics 54 (3) (2013) 232-237. DOI: https://doi.org/10.1007/s11148-013-9580-0

Larissa L. C., Marcos M. A., Maria M. V., Souza N. S. L., and Farias E. C. - Effect of high temperatures on self-compacting concrete with high levels of sugarcane bagasse ash and metakaolin, Constr. Build. Mater. 248 (2020) 118715. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118715

Thi Phuong D., Van Quang N., and Minh Duc V. - A Study on Property Improvement of Cement Pastes Containing Fly Ash and Silica Fume After Treated at High Temperature, Adv. Intell. Syst. Comput. 1284 (2021) 532-542. DOI: https://doi.org/10.1007/978-3-030-62324-1_45

Irshidat M. R. and Al-Saleh M. H. - Thermal performance and fire resistance of nanoclay modified cementitious materials, Constr. Build. Mater. 159 (2018) 213-219. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.127

Xu Y., Wong Y. L., Poon C. S., and Anson M. - Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures, Cem. Concr. Res. 33 (12) (2003) 2009-2016. DOI: https://doi.org/10.1016/S0008-8846(03)00216-3

Thomas C., Rosales J., Polanco J. A., and Agrela F. - Steel slags, Elsevier Ltd, 2018. DOI: https://doi.org/10.1016/B978-0-08-102480-5.00007-5

Dong Q., Wang G., Chen X., Tan J., and Gu X. - Recycling of steel slag aggregate in portland cement concrete: An overview, J. Clean. Prod. 282 (2021) 124447-124466. DOI: https://doi.org/10.1016/j.jclepro.2020.124447

Faleschini F., Brunelli K., Zanini M. A., Dabalà M., and Pellegrino C. - Electric Arc Furnace Slag as Coarse Recycled Aggregate for Concrete Production, J. Sustain. Metall. 2 (1) (2016) 44-50. DOI: https://doi.org/10.1007/s40831-015-0029-1

Bai T., Song Z. G., Wu Y. G., Di Hu X., and Bai H. - Influence of steel slag on the mechanical properties and curing time of metakaolin geopolymer, Ceram. Int. 44 (13) (2018) 15706-15713. DOI: https://doi.org/10.1016/j.ceramint.2018.05.243

Atahan H. N. and Dikme D. - Use of mineral admixtures for enhanced resistance against sulfate attack, Constr. Build. Mater. 25 (8) (2011) 3450-3457. DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.036

Moon H. Y., Lee S. T., Kim H. S., and KimS. S. - Experimental study on the sulfate resistance of concrete blended ground granulated blast-furnace slag for recycling, Geosystem Eng. 5 (3) (2002) 67-73. DOI: https://doi.org/10.1080/12269328.2002.10541189

Netinger I., Varevac D., Bjegović D., and Morić D. - Effect of high temperature on properties of steel slag aggregate concrete, Fire Saf. J. 59 (2013) 1-7. DOI: https://doi.org/10.1016/j.firesaf.2013.03.008

Shumuye E. D., Zhao J., and Wang Z. - Effect of fire exposure on physico-mechanical and microstructural properties of concrete containing high volume slag cement, Constr. Build. Mater. 213 (2019) 447-458. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.079

Lublóy É., Kopecskó K., Balázs G. L., Szilágyi I. M., and Madarász J. - Improved fire resistance by using slag cements, J. Therm. Anal. Calorim. 125 (1) (2016) 271-279. DOI: https://doi.org/10.1007/s10973-016-5392-z

Young J. F. - A review of the mechanisms of set-retardation in portland cement pastes containing organic admixtures, Cem. Concr. Res. 2 (4) (1972) 415-433. DOI: https://doi.org/10.1016/0008-8846(72)90057-9

Li Y. X., Chen Y. M., Wei J. X., He X. Y., Zhang H. T., and W. Zhang S. - A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste, Cem. Concr. Res. 36 (9) 1740-1743. DOI: https://doi.org/10.1016/j.cemconres.2004.07.007

Morsy M. S., Al-Salloum Y. A., Abbas H., and Alsayed S. H. - Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures, Constr. Build. Mater. 35 (2012) 900-905. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.099

Khoury G. A. - Effect of fire on concrete and concrete structures, Progress in Structural Engineering and Materials 2 (4) (2000) 429-447. DOI: https://doi.org/10.1002/pse.51

Downloads

Published

2022-03-11

How to Cite

[1]
T. D. H. Le, L. D. Pham, and V. V. . Pham, “Granulated blast furnace slag as a supplement enhancing fire resistance of Portland cement mortar”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 69–78, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE