Numerical simulation of the stress-strain during Constrained Groove Pressing process
DOI:
https://doi.org/10.15625/2525-2518/16383Keywords:
Finite Element Simulation, Several Plastic Deformation, Constrained Grooved Pressing, AZ31 Magnesium AlloysAbstract
In the case of plane deformation, the stress-strain of the workpiece can be calculated analytically with some simplifications without losing the generality of the problem. Numerical simulation by DEFORM software can be used to analyze most thermo-mechanical forming processes, and many heat treatment processes. The sequentially simulate each process that is to be applied to the workpiece of Constrained Grooved Pressing (CGP) plastic deformation process by finite element method allows to determine technological parameters such as pressure force, stress field, strain field and risk of failure or destruction. The stress-strain has been analyzed at the characteristic points of the plastic deformation region including on the surface, at the center of the workpiece and at the transition regions, the results are consistent with the theoretical study. The unique feature of CGP technology compared to other types of severe plastic deformation (SPD) is that the plastic deformation zone is not in a direct contact with the mold surface, but subjected to indirect forces, and has a small hydrostatic stress. The hydrostatic force and stress parameters only come into play at the end of the back elastic compression stroke. Through numerical simulation, it is possible to visually determine the state of stress and strain on the entire workpiece at all times of the stroke. Therefore, it is possible to determine the stress in the principle axis system.
Downloads
References
Tsuji N. - Bulk Nanostructured Materials (Eds: M. J. Zehet- bauer , Y. T. Zhu), WILEY-VCH, Weinheim, 2009, pp. 235.
Valiev R. Z., Islangeliev R. K., Alexandrov I. V. - Russian Federration, 1999.
Valiev R. Z., Langdon T. G. - Principles of Equal- Channel Angular Pressing as a Processing Tool for Grain Refinement, Progress in Materials Science 51 (7) (2006) 881-981. doi:10.1016/j.pmatsci.2006.02.003 DOI: https://doi.org/10.1016/j.pmatsci.2006.02.003
Segal V. M. - Materials processing by simple shear, Mater. Sci. Eng. A 197 (1995) 157-164. doi.org/10.1016/0921-5093(95)09705-8 DOI: https://doi.org/10.1016/0921-5093(95)09705-8
Baik S. C., Estrin Y., Kim H. S., Hellmig R., and Jeong H. T. - Calculation of deformation behavior and texture evolution during equal channel angular pressing of IF steel usingdislocation based modeling of strain hardening, Mater. Sci. Forum 408-412 (2002) 697-702. DOI: https://doi.org/10.4028/www.scientific.net/MSF.408-412.697
Kim H. S. - Prediction of temperature rise in equal channel angular pressing, Mater. Trans. 42 (2001) 536-538. doi.org/10.2320/matertrans.42.536. DOI: https://doi.org/10.2320/matertrans.42.536
Fukuda Y., Oh-ishi K., Horita Z., and Langdon T. G. - Processing of a low-carbon steel by equal-channel angular pressing, Acta Mater. 50 (2002) 1359-1368. DOI: https://doi.org/10.1016/S1359-6454(01)00441-4
doi.org/10.1016/S1359-6454(01)00441-4
Kim H. S., Lee Y. S.,. Hong S. I, Tarakanova A. A., and Alexandrov I. V. - Deformation behavior of copper during a high pressure torsion process, J. Mater. Proc. Technol. 142 (2003) 334-337. https://doi.org/10.1016/S0924-0136(03)00590-9 DOI: https://doi.org/10.1016/S0924-0136(03)00590-9
Faraji G., Mashhadi M. M., and Kim H. S.- Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett. 65 (2011) 3009-3012. https://doi.org/10.1016/j.matlet.2011.06.039 DOI: https://doi.org/10.1016/j.matlet.2011.06.039
Kim H. S., Quang P., Seo M. H., Hong S. I., Baik K. H., and Nghiep D. M. - Process Modelling of Equal Channel Angular Pressing for Ultrafine Grained Materials Materials Transactions, 45 (7) (2004) 1-5. https://doi.org/10.2320/matertrans.45.2172 DOI: https://doi.org/10.2320/matertrans.45.2172
Quang P. and Hao P. T. - The Preparation and Characterization of Cu/AA6061 multi-layer Composte produced by Accumulated Roll Bonding, IOP Conf. Series: Materials Science and Engineering 758 (2020) 012099 doi:10.1088/1757-899X/758/1/012099 DOI: https://doi.org/10.1088/1757-899X/758/1/012099
Xu C., Furukawa M., Horita Z., and Langdon T. G. - The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP, J. Mater. Sci. Eng. A, 398 (2005) 66-76.
https://doi.org/10.1016/j.msea.2005.03.083 DOI: https://doi.org/10.1016/j.msea.2005.03.083
Zhu Y. T., Lowe T. C., Jiang H.and Huang J. - Patent No. 6197129, USA, 2001.
Lee P. J. - Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement, J. Mater. Process. Technol, 130-131 (2001) 208-213. DOI: https://doi.org/10.1016/S0924-0136(02)00722-7
Krishnaiah I., Chakkingal U., and Venugopal P. - Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scripta Materialia 52 (2005) 1229-1233. DOI: https://doi.org/10.1016/j.scriptamat.2005.03.001
Krishnaiah A., Chakkingal U., Venugopal P., - Applicability of the groove pressing technique for grain refinement in commercial purity copper, Mater Sci. Eng. A 410-411 (2005) 337-40. DOI: https://doi.org/10.1016/j.msea.2005.08.101
Peng K., Su L., Shaw L., Qian K. - Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys, Scr. Mater. 56 (2007) 987-90. DOI: https://doi.org/10.1016/j.scriptamat.2007.01.043
Yoon S. C., Krishnaiah A., Chakkingal U., Kim H. S. - Severe plastic deformation and strain localization in groove pressing, Comput Mater Sci. 43 (2008) 641-5. DOI: https://doi.org/10.1016/j.commatsci.2008.01.007
Zrnik J., Kovarik T., Novy Z., Cieslar M. - Ultrafine-grained structure development and deformation behavior of aluminium processed by constrained groove pressing, Mater Sci. Eng. A 503 (2009) 126-9. DOI: https://doi.org/10.1016/j.msea.2008.03.050
Aal M., Kim H. S. - Wear properties of high pressure torsion rocessed ultrafine grained Al-7%Si alloy, Mater Des. 53 (2014) 373-82. DOI: https://doi.org/10.1016/j.matdes.2013.07.045
Quang P., Thuy P. T., Hue D. T. H., Ngung D. M., Schukin V. Y. - The deformation of AZ31 magnesium alloy during warm constrained groove pressing Acta Metallurgica Slovaca 25 (1) (2019) 48-54. DOI 10.12776/ams.v25i1.121 DOI: https://doi.org/10.12776/ams.v25i1.1218
Thuy P. T., Hue D. T. H., Ngung D. M., and Quang . - Evolution of microstructure and mechanical properties of magnesium alloy AZ31 after Constrained Groove Pressing, J. Science and Technology of Metals (78) (2018) 32-36.
Thuy P. T., Hue D. T. H., Ngung D. M., and Quang P. - A Study on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy after Constrained Groove Pressing IOP Conf. Ser.: Mater. Sci. Eng. 611 (2019) 012005.
doi:10.1088/1757-899X/611/1/012005 DOI: https://doi.org/10.1088/1757-899X/611/1/012005
Zhu, Y.T., Jiang, H., Huang, J. et al. - A new route to bulk nanostructured metals, Metall Mater. Trans. A 32 (2001) 1559-1562. https://doi.org/10.1007/s11661-001-0245-0 DOI: https://doi.org/10.1007/s11661-001-0245-0
Brandes E. A. - Smithells metals reference book, Butterworths, 1988.
Cheng Y. Q., Zhang H., Chen Z. H., Xian K. F., - Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, Journal of materials processing technology 208 (2008) 29-34. https://doi.org/10.1016/j.jmatprotec.2007.12.095.
Brandes E. A. - Smithells metals reference book, Butterworths, (1988).
Cheng Y. Q., Zhang H., Chen Z. H., Xian K. F., - Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, Journal of materials processing technology 208 (2008) 29-34. https://doi.org/10.1016/j.jmatprotec.2007.12.095 DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.095
Storozhev M. V., Popov E. A. - Theory of metal forming, Publishing House, Mechanical Engineering, Moscow, 1971.
Smirnov O. M. - Processing of metals by pressure in the state of superplasticity - M., Mashinostroyeniye, 1979, pp. 184.
Vratna J. - Physical Properties of Ultrafine-grained Polycrystals of Magnesium Based Alloys, DIPLOMA THESIS, 2010, pp. 6-7.
Fong K. S., Atsushi D., Jen T. M., Chua B. W. - Effect of deformation and temperature paths in severe plastic deformation using groove pressing on microstructure, texture, and mechanical properties of AZ31-O, J. Manuf. Sci. Eng. 137 (5) (2015) 051004. https://doi.org/10.1115/1.4031021 DOI: https://doi.org/10.1115/1.4031021
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, Articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJS either via VJS journal portal or other channel to publish their research work in VJS agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.