Numerical simulation of the stress-strain during Constrained Groove Pressing process

Authors

  • Quang Pham School of Material Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Ha Noi, Viet Nam
  • Pham Thi Thuy Falcuty of Electro - Mechanics, Hanoi University of Mining and Geology, 18 Pho Vien, Bac Tu Liem, Ha Noi, Viet Nam
  • Dang Thi Hong Hue School of Material Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Ha Noi, Viet Nam
  • Hoang Thi Ngoc Quyen School of Material Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Ha Noi, Viet Nam
  • Tran Thi Thu Hien School of Material Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Ha Noi, Viet Nam
  • Dao Minh Ngung School of Material Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16383

Keywords:

Finite Element Simulation, Several Plastic Deformation, Constrained Grooved Pressing, AZ31 Magnesium Alloys

Abstract

In the case of plane deformation, the stress-strain of the workpiece can be calculated analytically with some simplifications without losing the generality of the problem. Numerical simulation by DEFORM software  can be used to analyze most thermo-mechanical forming processes, and many heat treatment processes. The sequentially simulate each process that is to be applied to the workpiece of Constrained Grooved Pressing (CGP) plastic deformation process by finite element method allows to determine technological parameters such as pressure force, stress field, strain field and risk of failure or destruction. The stress-strain has been analyzed at the characteristic points of the plastic deformation region including on the surface, at the center of the workpiece and at the transition regions, the results are consistent with the theoretical study. The unique feature of CGP technology compared to other types of severe plastic deformation (SPD) is that the plastic deformation zone is not in a direct contact with the mold surface, but subjected to indirect forces, and has a small hydrostatic stress. The hydrostatic force and stress parameters only come into play at the end of the back elastic compression stroke. Through numerical simulation, it is possible to visually determine the state of stress and strain on the entire workpiece at all times of the stroke. Therefore, it is possible to determine the stress in the principle axis system.

Downloads

Download data is not yet available.

References

Tsuji N. - Bulk Nanostructured Materials (Eds: M. J. Zehet- bauer , Y. T. Zhu), WILEY-VCH, Weinheim, 2009, pp. 235.

Valiev R. Z., Islangeliev R. K., Alexandrov I. V. - Russian Federration, 1999.

Valiev R. Z., Langdon T. G. - Principles of Equal- Channel Angular Pressing as a Processing Tool for Grain Refinement, Progress in Materials Science 51 (7) (2006) 881-981. doi:10.1016/j.pmatsci.2006.02.003 DOI: https://doi.org/10.1016/j.pmatsci.2006.02.003

Segal V. M. - Materials processing by simple shear, Mater. Sci. Eng. A 197 (1995) 157-164. doi.org/10.1016/0921-5093(95)09705-8 DOI: https://doi.org/10.1016/0921-5093(95)09705-8

Baik S. C., Estrin Y., Kim H. S., Hellmig R., and Jeong H. T. - Calculation of deformation behavior and texture evolution during equal channel angular pressing of IF steel usingdislocation based modeling of strain hardening, Mater. Sci. Forum 408-412 (2002) 697-702. DOI: https://doi.org/10.4028/www.scientific.net/MSF.408-412.697

Kim H. S. - Prediction of temperature rise in equal channel angular pressing, Mater. Trans. 42 (2001) 536-538. doi.org/10.2320/matertrans.42.536. DOI: https://doi.org/10.2320/matertrans.42.536

Fukuda Y., Oh-ishi K., Horita Z., and Langdon T. G. - Processing of a low-carbon steel by equal-channel angular pressing, Acta Mater. 50 (2002) 1359-1368. DOI: https://doi.org/10.1016/S1359-6454(01)00441-4

doi.org/10.1016/S1359-6454(01)00441-4

Kim H. S., Lee Y. S.,. Hong S. I, Tarakanova A. A., and Alexandrov I. V. - Deformation behavior of copper during a high pressure torsion process, J. Mater. Proc. Technol. 142 (2003) 334-337. https://doi.org/10.1016/S0924-0136(03)00590-9 DOI: https://doi.org/10.1016/S0924-0136(03)00590-9

Faraji G., Mashhadi M. M., and Kim H. S.- Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett. 65 (2011) 3009-3012. https://doi.org/10.1016/j.matlet.2011.06.039 DOI: https://doi.org/10.1016/j.matlet.2011.06.039

Kim H. S., Quang P., Seo M. H., Hong S. I., Baik K. H., and Nghiep D. M. - Process Modelling of Equal Channel Angular Pressing for Ultrafine Grained Materials Materials Transactions, 45 (7) (2004) 1-5. https://doi.org/10.2320/matertrans.45.2172 DOI: https://doi.org/10.2320/matertrans.45.2172

Quang P. and Hao P. T. - The Preparation and Characterization of Cu/AA6061 multi-layer Composte produced by Accumulated Roll Bonding, IOP Conf. Series: Materials Science and Engineering 758 (2020) 012099 doi:10.1088/1757-899X/758/1/012099 DOI: https://doi.org/10.1088/1757-899X/758/1/012099

Xu C., Furukawa M., Horita Z., and Langdon T. G. - The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP, J. Mater. Sci. Eng. A, 398 (2005) 66-76.

https://doi.org/10.1016/j.msea.2005.03.083 DOI: https://doi.org/10.1016/j.msea.2005.03.083

Zhu Y. T., Lowe T. C., Jiang H.and Huang J. - Patent No. 6197129, USA, 2001.

Lee P. J. - Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement, J. Mater. Process. Technol, 130-131 (2001) 208-213. DOI: https://doi.org/10.1016/S0924-0136(02)00722-7

Krishnaiah I., Chakkingal U., and Venugopal P. - Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scripta Materialia 52 (2005) 1229-1233. DOI: https://doi.org/10.1016/j.scriptamat.2005.03.001

Krishnaiah A., Chakkingal U., Venugopal P., - Applicability of the groove pressing technique for grain refinement in commercial purity copper, Mater Sci. Eng. A 410-411 (2005) 337-40. DOI: https://doi.org/10.1016/j.msea.2005.08.101

Peng K., Su L., Shaw L., Qian K. - Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys, Scr. Mater. 56 (2007) 987-90. DOI: https://doi.org/10.1016/j.scriptamat.2007.01.043

Yoon S. C., Krishnaiah A., Chakkingal U., Kim H. S. - Severe plastic deformation and strain localization in groove pressing, Comput Mater Sci. 43 (2008) 641-5. DOI: https://doi.org/10.1016/j.commatsci.2008.01.007

Zrnik J., Kovarik T., Novy Z., Cieslar M. - Ultrafine-grained structure development and deformation behavior of aluminium processed by constrained groove pressing, Mater Sci. Eng. A 503 (2009) 126-9. DOI: https://doi.org/10.1016/j.msea.2008.03.050

Aal M., Kim H. S. - Wear properties of high pressure torsion rocessed ultrafine grained Al-7%Si alloy, Mater Des. 53 (2014) 373-82. DOI: https://doi.org/10.1016/j.matdes.2013.07.045

Quang P., Thuy P. T., Hue D. T. H., Ngung D. M., Schukin V. Y. - The deformation of AZ31 magnesium alloy during warm constrained groove pressing Acta Metallurgica Slovaca 25 (1) (2019) 48-54. DOI 10.12776/ams.v25i1.121 DOI: https://doi.org/10.12776/ams.v25i1.1218

Thuy P. T., Hue D. T. H., Ngung D. M., and Quang . - Evolution of microstructure and mechanical properties of magnesium alloy AZ31 after Constrained Groove Pressing, J. Science and Technology of Metals (78) (2018) 32-36.

Thuy P. T., Hue D. T. H., Ngung D. M., and Quang P. - A Study on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy after Constrained Groove Pressing IOP Conf. Ser.: Mater. Sci. Eng. 611 (2019) 012005.

doi:10.1088/1757-899X/611/1/012005 DOI: https://doi.org/10.1088/1757-899X/611/1/012005

Zhu, Y.T., Jiang, H., Huang, J. et al. - A new route to bulk nanostructured metals, Metall Mater. Trans. A 32 (2001) 1559-1562. https://doi.org/10.1007/s11661-001-0245-0 DOI: https://doi.org/10.1007/s11661-001-0245-0

Brandes E. A. - Smithells metals reference book, Butterworths, 1988.

Cheng Y. Q., Zhang H., Chen Z. H., Xian K. F., - Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, Journal of materials processing technology 208 (2008) 29-34. https://doi.org/10.1016/j.jmatprotec.2007.12.095.

Brandes E. A. - Smithells metals reference book, Butterworths, (1988).

Cheng Y. Q., Zhang H., Chen Z. H., Xian K. F., - Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, Journal of materials processing technology 208 (2008) 29-34. https://doi.org/10.1016/j.jmatprotec.2007.12.095 DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.095

Storozhev M. V., Popov E. A. - Theory of metal forming, Publishing House, Mechanical Engineering, Moscow, 1971.

Smirnov O. M. - Processing of metals by pressure in the state of superplasticity - M., Mashinostroyeniye, 1979, pp. 184.

Vratna J. - Physical Properties of Ultrafine-grained Polycrystals of Magnesium Based Alloys, DIPLOMA THESIS, 2010, pp. 6-7.

Fong K. S., Atsushi D., Jen T. M., Chua B. W. - Effect of deformation and temperature paths in severe plastic deformation using groove pressing on microstructure, texture, and mechanical properties of AZ31-O, J. Manuf. Sci. Eng. 137 (5) (2015) 051004. https://doi.org/10.1115/1.4031021 DOI: https://doi.org/10.1115/1.4031021

Downloads

Published

2022-03-11

How to Cite

[1]
Q. Pham, P. T. Thuy, D. T. H. Hue, H. T. N. Quyen, T. T. T. Hien, and D. M. Ngung, “Numerical simulation of the stress-strain during Constrained Groove Pressing process”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 79–91, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE