Effects of surface ligands on the formation of spherical hollow nickel phosphide nanoparticles and their self-assemblies
DOI:
https://doi.org/10.15625/2525-2518/16380Keywords:
Spherical hollow nanoparticles, self-assemblies, nickel phosphide, surface ligands, Kirkendal effectAbstract
Nickel phosphide nanoparticles have beenwellknown for their electrical, catalytic, and corrosion-resistant properties. In the synthesis of hollow nickel phosphide nanoparticles, the role of surface ligands was very important in forming hollow structures. Thus, in this article, wesystematicallyinvestigated the effects of different ligands on the formation of spherical hollow nickel phosphide nanoparticles. Specifically, our results showed that when primary amines with long alkyl chains were used, spherical hollow nickel phosphide nanoparticles wereobtained. On the other hand, when amines with bulky head groups, bulky alkyl chains, or ligands with different head groups were used, spherical hollow nickel phosphide nanoparticles did not form.Furthermore, moderate useof tri-n-octylphosphine (TOP), another surface ligand and P precursor, wasalsoa contributing factor to the hollow nickel phosphide formation. Interestingly, we discovered that limited use of TOPinducedself-assembling of spherical hollow nickel phosphide nanoparticles into micro-sized assemblies. The assemblies were spherical, compact and uniform,whichfurther showing the use of surface ligands as a tool to engineer novel material structures from the nano-/micro-scales.We are currently directing our efforts toward more understanding of the self-assembling mechanism at the sub-nano scale as well as proposing possible application for our nanoparticles and their assemblies.
Downloads
References
Arinsson B., Landstrom T., and Rundquist S. - Borides, silicides and phosphides, Wiley publisher, New York, 1965.
Greenwood N. N. and Earnshaw A. - Chemistry of the elements, Pergamon Press,New York, 1994.
Stein B. F. and Walmsley R. H. - Magnetic susceptibility and nuclear magnetic resonance in transition-metal monophosphides, Phys. Rev. B 148 (1966) 933-939.
https://doi.org/10.1103/PhysRev.148.933 DOI: https://doi.org/10.1103/PhysRev.148.933
Qian C., Kim F., Ma L., Tsui F., Yang P. D., and Liu J. - Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires, J. Am. Chem. Soc. 126 (2004) 1195-1198.https://doi.org/10.1021/ja038401c DOI: https://doi.org/10.1021/ja038401c
Wang J., Johnston-Peck A. C., and Tracy J. B. - Nickel phosphide nanoparticles with hollow, solid, and amorphous structures. Chem. Mater. 21 (2009) 4462-4467. https://doi.org/10.1021/cm901073k DOI: https://doi.org/10.1021/cm901073k
Chiang R. K. and Chiang R. T. - Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect, Inorg. Chem. 46 (2007) 369-371.
https://doi.org/10.1021/ic061846s DOI: https://doi.org/10.1021/ic061846s
Nam K. M., Shim J. H., Ki H., Choi S. I., Lee G., Jang J. K., Jo Y., Jung M. H., Song H., and Park J. T. - Single-crystalline hollow face-centered-cubic cobalt nanoparticles from solid face-centered-cubic cobalt oxide nanoparticles, Angew. Chem. Int. Ed. 47 (2008) 9504-9508. https://doi.org/10.1002/anie.200803048 DOI: https://doi.org/10.1002/anie.200803048
Hsiao A. P. and Heller M. J. - Electric-field-directed self-assembly of active enzyme-nanoparticle structures, J. Biomed. Biotechnol. 2012 (2012).
https://doi.org/10.1155/2012/178487 DOI: https://doi.org/10.1155/2012/178487
Murray C. B., Kagan C. R., and Bawendi M. G. - Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci. 30 (2000) 545-610. https://doi.org/10.1146/annurev.matsci.30.1.545 DOI: https://doi.org/10.1146/annurev.matsci.30.1.545
Xia Y., Nguyen D. T., N., Yang M., Lee B., Santos A., Podsiadlo P., Tang Z., Glotzer S. C., and Kotov N. A. - Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotech. 6 (2011) 580-587.
https://doi.org/10.1038/nnano.2011.121 DOI: https://doi.org/10.1038/nnano.2011.121
Pileni M. P. - Nanocrystal self-assemblies: Fabrication and collective properties, J. Phys. Chem. B105 (2001) 3358-3371. https://doi.org/10.1021/jp0039520 DOI: https://doi.org/10.1021/jp0039520
Park J., Kang E., Son S. U., Park H. M., Lee M. K., Kim J., Kim K. W., Noh H. J., Park J. H., Bae C. J., et al. - Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 17 (2005) 429-434.
https://doi.org/10.1002/adma.200400611 DOI: https://doi.org/10.1002/adma.200400611
Zafiropoulou I., Papagelis K., Boukos N., Siokou A., Niarchos D., and Tzitzios V. - Chemical synthesis and self-assembly of hollow Ni/Ni2P hybrid nanospheres, J. Phys. Chem. C114 (2010) 7582-7585. https://doi.org/10.1021/jp910160g DOI: https://doi.org/10.1021/jp910160g
Henkes A. E. and Schaak R. E. - Trioctylphosphine: A general phosphorus source for the low-temperature conversion of metals into metal phosphides, Chem. Mater. 19(2007) 4234-4242.https://doi.org/10.1021/cm071021w DOI: https://doi.org/10.1021/cm071021w
Park J., Koo B., Yoon K. Y., Hwang Y., Kang M., Park J. G., and Hyeon T. - Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump, J. Am. Chem. Soc. 127 (2005) 8433-8440. https://doi.org/10.1021/ja0427496 DOI: https://doi.org/10.1021/ja0427496
Park S. J., Kim S., Lee S., Khim Z. G., Char K., and Hyeon T. - Synthesis and magnetic studies of uniform iron nanorods and nanospheres, J. Am. Chem. Soc.122 (2000) 8581-8582. https://doi.org/10.1021/ja001628c DOI: https://doi.org/10.1021/ja001628c
Ye E., Zhang S. Y., Lim S. H., Liu S., and Han M. Y. - Morphological tuning, self-assembly and optical properties of indium oxide nanocrystals, Phys. Chem. Chem. Phys. 12 (2010) 11923-11929. https://doi.org/10.1039/C0CP00138D DOI: https://doi.org/10.1039/c0cp00138d
Brock S. L. and Senevirathne K. - Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications, J. Solid State Chem. 181 (2008) 1552-1559. https://doi.org/10.1016/j.jssc.2008.03.012 DOI: https://doi.org/10.1016/j.jssc.2008.03.012
Perera S. C., Tsoi G., Wenger L. E., and Brock S. L. - Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: A new, versatile route to nanoscale transition metal phosphides, J. Am. Chem. Soc. 125 (2003) 13960-13961. https://doi.org/10.1021/ja038037h DOI: https://doi.org/10.1021/ja038037h
Zhang H., Ha D. H., Hovden R., Kourkoutis L. F., and Robinson R. D. - Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source, Nano Lett. 11 (2011) 188-197. https://doi.org/10.1021/nl103400a DOI: https://doi.org/10.1021/nl103400a
Xia Y., Xiong Y., Lim B., and Skrabalak S. E. - Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew, Chem. Int. Ed. 48 (2009) 60-103. https://doi.org/10.1002/anie.200802248 DOI: https://doi.org/10.1002/anie.200802248
Naravanaswamy A., Xu H., Pradhan N., and Peng X. - Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. Angew, Chem. Int. Ed. 45 (2006) 5361-5364.
https://doi.org/10.1002/anie.200601553 DOI: https://doi.org/10.1002/anie.200601553
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, Articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJS either via VJS journal portal or other channel to publish their research work in VJS agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.