Magnetic phase transition and magnetocaloric effect of Re0.7Sr0.3MnO3 polycrystalline materials

Authors

  • Nguyen Thi Dung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Thi Viet Chinh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Dao Son Lam Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Dinh Chi Linh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Pham Thi Thanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Huu Duc Institute for Technology of Radioactive and Rare Elements, 48 Lang Ha, Ha Noi, Viet Nam
  • Tran Dang Thanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16378

Keywords:

Magnetic phase transition, magnetocaloric effect, perovskite manganites

Abstract

In this report, we present some results of the magnetic phase transition nature and magnetocaloric effect of four polycrystalline ceramics of RE0.7Sr0.3MnO3 with RE = La, Pr, Nd and Sm, which were prepared by solid phase reaction method. X-ray diffraction data shows that all samples are single phase of RE0.7Sr0.3MnO3. The sample with RE = La belongs to the rhombohedral structure (space group: R3-c), whereas the other remaining samples belong to the orthorhombic one (space group: Pbnm). We pointed out that the difference in ionic radius at the RE site plays an important role in modifying the nature and Curie temperature (TC) of the ferromagnetic-paramagnetic phase transition of RE0.7Sr0.3MnO3 compounds. Namely, the RE = Nd sample has the characteristics of the first-order magnetic phase transition with TC = 242 K. Meanwhile, for RE = La, Pr, and Sm, the materials exhibit the characteristics of the second-order magnetic phase transition with TC = 360, 262, and 98 K, respectively. Among these, the magnetic phase transitions of two compounds with RE = Pr and Nd occur near room temperature with very large magnetocaloric effects. The values of the maximum magnetic entropy changes are higher than 3 J/kgK under magnetic field change of 10 kOe, suggesting their potential application in the field of civil magnetic refrigeration. The nature of the magnetic phase transition and the characteristic quantities related to the magnetocaloric effects of the RE0.7Sr0.3MnO3 compounds were studied and discussed in detail through the temperature and magnetic field dependences of the magnetization data.  

Downloads

Download data is not yet available.

References

Thanh T. D., Dung N. T., Chinh N. T. V., Lam D. S., Tuan D. A., and Gamzatov A. G. - Magnetic, magnetotransport and critical properties of polycrystalline Pr0.7Sr0.3MnO3 located at the tricritical point, J. Alloys Compd. 884 (2021) 161046. https://doi.org/10.1016/j.jallcom.2021.161046. DOI: https://doi.org/10.1016/j.jallcom.2021.161046

Lau L. N., Lim K. P., Ishak A. N., Awang Kechik M. M., Chen S. K., Ibrahim N. B. Y., Miryala M., Murakami M., and Shaari A. H. - The physical properties of submicron and nano-grained La0.7Sr0.3MnO3 and Nd0.7Sr0.3MnO3 synthesised by sol-gel and solid-state reaction methods, Coatings 11 (3) (2021) 361. https://doi.org/10.3390/coatings11030361. DOI: https://doi.org/10.3390/coatings11030361

Zhang X., Han Y., Kan X., Wang M., Rao R., Zheng G., and Ma Y. - Magnetic properties of La0.7Sr0.3MnO3 under the pressure and the transport property under the magnetic field, J. Am. Ceram. Soc. 104 (2) (2021) 955-965. https://doi.org/10.1111/jace.17495. DOI: https://doi.org/10.1111/jace.17495

Taboada-Moreno C. A., Sánchez-De Jesús F., Pedro-García F., Cortés-Escobedo C. A., Betancourt-Cantera J. A., Ramírez-Cardona M., and Bolarín-Miró A. M. - Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3, J. Magn. Magn. Mater. 496 (2020) 165887. https://doi.org/10.1016/j.jmmm.2019.165887. DOI: https://doi.org/10.1016/j.jmmm.2019.165887

Gadzhiev A. B., Gamzatov A. G., Batdalov A. B., Aliev A. M., Nanto D., Kurniawan B., Yu S. C., and Kim D. H. - Heat capacity and magnetocaloric effect in manganites La0.7SrxBa0.3-xMnO3, Chelyabinsk Phys. Math. J. 6 (1) (2021) 87-94. https://doi.org/10.47475/2500-0101-2021-16107. DOI: https://doi.org/10.47475/2500-0101-2021-16107

Shi M., Bisht P., Kumar A., and Mahato R. N. - Magnetic and magnetocaloric properties of the nanocrystalline Pr0.7Ba0.2Ca0.1MnO3 sample, AIP Adv. 11 (1) (2021) 015239. https://doi.org/10.1063/9.0000088. DOI: https://doi.org/10.1063/9.0000088

Vadnala S., Srivastava N. B., and Asthana S. - Nature of correlated polaron hopping mechanism in A-site cation disorder Nd0.7-xLaxSr0.3MnO3 (x = 0.0, 0.1, 0.2 and 0.3) manganites, Appl. Phys. A 126 (3) (2020) 1-10. https://doi.org/10.1007/s00339-020-3333-y. DOI: https://doi.org/10.1007/s00339-020-3333-y

Thiyagarajan R., Arumugam S., Sivaprakash P., Kannan M., Saravanan C., and Yang W. - Hydrostatic pressure effect on the spin reorientation transition of ferromagnetic Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) polycrystals, Int. J. Appl. Phys. 121 (21) (2017) 215902. https://doi.org/10.1063/1.4984204. DOI: https://doi.org/10.1063/1.4984204

Aliev A. M., Batdalov A. B., and Khanov L. N. - Magnetic and lattice contributions to the magnetocaloric effect in Sm1-xSrxMnO3 manganites, Appl. Phys. Lett. 112 (14) (2018) 142407. https://doi.org/10.1063/1.5023867. DOI: https://doi.org/10.1063/1.5023867

Das S., Ahmmad B., and Basith M. A. - Thermal stability of the crystallographic structure of nanocrystalline Nd0.7Sr0.3MnO3 manganite with enhanced magnetic properties, AIP Adv. 10 (9) (2020) 095135. https://doi.org/10.1063/5.0017299. DOI: https://doi.org/10.1063/5.0017299

Souza A. D., Babu P. D., Rayaprol S., Murari M. S., Mendonca L. D., and Daivajna M. - Size control on the magnetism of La0.7Sr0.3MnO3, J. Alloys Compd. 797 (2019) 874-882. https://doi.org/10.1016/j.jallcom.2019.05.004. DOI: https://doi.org/10.1016/j.jallcom.2019.05.004

Pilo J., Pruneda M., and Bristowe N. C. - Structural and magnetic phase diagram of epitaxial La0.7Sr0.3MnO3 from first principles, Electronic Structure, 3 (2) (2021) 024001. https://doi.org/10.1088/2516-1075/abe6af. DOI: https://doi.org/10.1088/2516-1075/abe6af

Koroleva L. I., Batashev I. K., Morozov A. S., Balbashov A. M., Szymczak H., and Slawska-Waniew A. - Relation of Giant Thermo-EMF, Magnetothermo-EMF, Magnetoresistance, and Magnetization to Magnetic Impurity States in Manganites Nd(1-x)SrxMnO3 and Sm(1-x)SrxMnO3, Tech. Phys. 63 (2) (2018) 220-225. https://doi.org/10.1134/S1063784218020202. DOI: https://doi.org/10.1134/S1063784218020202

Munazat D. R., Kurniawan B., Razaq D. S., Watanabe K., and Tanaka H. - Crossover critical behavior and magnetic entropy change of La0.7Ba0.1Ca0.1Sr0.1MnO3: A comparison between wet-mixing and sol-gel synthesis methods, Physica B Condens. Matter, 592 (2020) 412227. https://doi.org/10.1016/j.physb.2020.412227. DOI: https://doi.org/10.1016/j.physb.2020.412227

Pham Y., Manh T. V., Thanh T. D., Yang D. S., Yu S. C., and Kim D. H. - Magnetic and table-like magnetocaloric properties of polycrystalline Pr0.7Ba0.1Sr0.2MnO3, J. Electron. Mater. 48 (10) (2019) 6583-6590. https://doi.org/10.1007/s11664-019-07466-2. DOI: https://doi.org/10.1007/s11664-019-07466-2

Tozri A. and Dhahri E. - Structural and magnetotransport properties of (La, Pr)-Ba manganites, J. Alloys Compd. 783 (2019) 718-728.

https://doi.org/10.1016/j.jallcom.2018.12.303. DOI: https://doi.org/10.1016/j.jallcom.2018.12.303

Rao R., Han Y. Y., Kan X. C., Zhang X., Wang M., Qian N. X., Zheng G. H., and Ma Y. Q. - Magnetic property under the pressure and electrical transport behavior under the magnetic field for the perovskite manganite La0.7Ca0.3MnO3, J. Alloys Compd. 837 (2020) 155476. https://doi.org/10.1016/j.jallcom.2020.155476. DOI: https://doi.org/10.1016/j.jallcom.2020.155476

Pal A., Rao A., Kekuda D., Nagaraja B. S., Mondal R., and Biswas D. - Investigation of cationic disorder effects on the transport and magnetic properties of perovskite Pr0.7-xRExSr0.3MnO3 (x = 0.0, 0.2; RE= Nd, Sm, & Gd), J. Magn. Magn. Mater. 512 (2020) 167011. https://doi.org/10.1016/j.jmmm.2020.167011. DOI: https://doi.org/10.1016/j.jmmm.2020.167011

Banik S. and Das I. - Effect of A-site ionic disorder on magnetocaloric properties in large band width manganite systems, J. Alloys Compd. 742 (2018) 248-255. https://doi.org/10.1016/j.jallcom.2018.01.295. DOI: https://doi.org/10.1016/j.jallcom.2018.01.295

Wang G. F., Li L. R., Zhao Z. R., Yu X. Q., and Zhang X. F. - Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3 (Ln = La, Pr and Nd) nanoparticles, Ceram. Int. 40 (10) (2014) 16449-16454. https://doi.org/10.1016/j.ceramint.2014.07.154. DOI: https://doi.org/10.1016/j.ceramint.2014.07.154

Chen P., He W., Xiao G., Wen J., Yang T., Wu X., and Wang T. - Effect of A-site ionic disorder on the structure, magnetic, and magnetocaloric properties of La0.7-xNdxCa0.3-y(Ba, Sr)yMnO3, J. Appl. Phys. 127 (5) (2020) 055110. https://doi.org/10.1063/1.5120740. DOI: https://doi.org/10.1063/1.5120740

Coey J. M. D., Viret M., and Von Molnar S. - Mixed-valence manganites, Adv. Phys. 48 (2) (1999) 167-293. https://doi.org/10.1080/000187399243455. DOI: https://doi.org/10.1080/000187399243455

Arun B., Suneesh M. V., and Vasundhara M. - Comparative study of magnetic ordering and electrical transport in bulk and nano-grained Nd0.67Sr0.33MnO3 manganites, J. Magn. Magn. Mater. 418 (2016) 265-272. https://doi.org/10.1016/j.jmmm.2016.01.096. DOI: https://doi.org/10.1016/j.jmmm.2016.01.096

Saw A. K., Channagoudra G., Hunagund S., Hadimani R. L., and Dayal V. - Study of transport, magnetic and magnetocaloric properties in Sr2+ substituted praseodymium manganite, Mater. Res. Express, 7 (1) (2020) 016105. https://orcid.org/0000-0002-1330-0729. DOI: https://doi.org/10.1088/2053-1591/ab636d

Geng T. and Zhuang S. - Correlations between structural effects and eg bandwidth in manganites, Phys. Lett. A, 374 (15-16) (2010) 1784-1789.

https://doi.org/10.1016/j.physleta.2010.02.004. DOI: https://doi.org/10.1016/j.physleta.2010.02.004

Kao M. C., Chen H. Z., Young S. L., Shen C. Y., and Horng L. - Synthesis characterization of magnetic properties in La0.7-xLnxPb0.3MnO3 (Ln= Pr, Nd, Gd, Dy, Sm and Y) perovskite compounds, J. Alloys Compd. 440 (1-2) (2007) 18-22. https://doi.org/10.1016/j.jallcom.2006.09.030. DOI: https://doi.org/10.1016/j.jallcom.2006.09.030

Choudhary N., Verma M. K., Sharma N. D., Sharma S., and Singh D. - Correlation between magnetic and transport properties of rare earth doped perovskite manganites La0.6R0.1Ca0.3MnO3 (R= La, Nd, Sm, Gd, and Dy) synthesized by Pechini process, Mater. Chem. Phys. 242 (2020) 122482. https://doi.org/10.1016/j.matchemphys.2019.122482. DOI: https://doi.org/10.1016/j.matchemphys.2019.122482

Banerjee B. K. - On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12 (1) (1964) 16-17. https://doi.org/10.1016/0031-9163(64)91158-8. DOI: https://doi.org/10.1016/0031-9163(64)91158-8

Phan M. H. and Yu S. C. - Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater. 308 (2) (2007) 325-340. https://doi.org/10.1016/j.jmmm.2006.07.025. DOI: https://doi.org/10.1016/j.jmmm.2006.07.025

Dunhui W., Zhida H., Qingqi C., Songling H., Jianrong Z., and Youwei D. - The reduced Curie temperature and magnetic entropy changes in Gd1-xInx alloys, J. Alloys Compd. 396 (1-2) (2005) 22-24. https://doi.org/10.1016/j.jallcom.2004.12.004. DOI: https://doi.org/10.1016/j.jallcom.2004.12.004

Luo X., Yang H., Yu N., Wu Q., Yu Y., Zhang P., and Ge H. - The Magnetocaloric Effect and Electrochemistry Corrosion of La0.7-xSr0.3EuxMnO3 Manganite, Int. J. Electrochem. Sci. 16 (4) (2021) 210629. https://doi.org/10.20964/2021.06.31. DOI: https://doi.org/10.20964/2021.06.31

El Ganaoui M., El Jouad M., Bennacer R., Nunzi J. M., Omari L. E. H., Lekdadri A., Chami R., and Hlil E. K. - Critical behavior of Pr0.65Sr0.35MnO3 compound investigated by a Monte Carlo Simulation, EPJ Appl. Phys., 93 (1) (2021) 10903. https://doi.org/10.1051/epjap/2020200315. DOI: https://doi.org/10.1051/epjap/2020200315

Banik S. and Das I. - Large magnetoresistance and relative cooling power in polycrystalline Pr0.775Sr0.225MnO3 compound, J. Magn. Magn. Mater. 460 (2018) 234-238. https://doi.org/10.1016/j.jmmm.2018.04.015. DOI: https://doi.org/10.1016/j.jmmm.2018.04.015

Noumi M., Issaoui F., Dhahri E., and Hlil, E. K. - Study of Critical Behavior and Magnetocaloric Effect in Nd1-xSrxMnO3 Compounds, J. Supercond. Nov. Magn. 32 (6) (2019) 1507-1516. https://doi.org/10.1007/s10948-019-5040-5. DOI: https://doi.org/10.1007/s10948-019-5040-5

Aparnadevi M. and Mahendiran R. - Tunable spin reorientation transition and magnetocaloric effect in Sm0.7-xLaxSr0.3MnO3 series, Int. J. Appl. Phys. 113 (1) (2013) 013911. https://doi.org/10.1063/1.4773337. DOI: https://doi.org/10.1063/1.4773337

Downloads

Published

2022-03-11

How to Cite

[1]
N. T. Dung, “Magnetic phase transition and magnetocaloric effect of Re0.7Sr0.3MnO3 polycrystalline materials”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 105–114, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE