Synthesis co(benzenesulfonamide serinol-lactide) for preparation of the ph-sensitive hydrogel


  • Vu Viet Linh Nguyen Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc City, Ho Chi Minh City, Viet Nam
  • Dai Phu Huynh Faculty of Materials Technology, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam



benzenesulfonamide serinol, lactide, the ring-opening reaction


The pH-sensitive hydrogel based on polyurethanes is one of the most popular biodegradable copolymers that have been used in drug carrier applications. Polyurethanes containing sulfonamide groups exhibit sensitivity to changes in pH environment because they can receive and donate cationic hydrogens. In this research, the co(benzenesulfonamide serinol-lactide), named Co(BSSe-LA), was synthesized based on the ring-opening reaction of lactide and hydroxyl groups of benzenesulfonamide serinol (BSSe). The influence of reaction time and content (wt.%) of stannous octoate catalyst on the reaction efficiency of Co(BSSe-LA) was investigated. Proton nuclear magnetic resonance (H1NMR) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the successful formation of BSSe and Co(BSSe-LA). Besides, the results show that the reaction efficiency of Co(BSSe-LA) increased when the reaction time and the stannous octoate concentration increased. The reaction efficiency of Co(BSSe-LA) was 33.67 % with reaction parameters including catalyst content of 1.2 wt.%, reaction time of 24 hours and BSSe/LA molar ratio of 1/2. Co(BSSe-LA) was prepared for polymerization of polyurethane and fabrication of pH-sensitive hydrogel. Furthermore, the product can be decomposed easily in aqueous medium thanks to the ester group of lactide. This hydrogel copolymer may be potential as an injectable hydrogel for the controllable drug and protein delivery system.


Download data is not yet available.


Ofridam F., Tarhini M., Lebaz N., Gagnière É., Mangin D., and Elaissari A. - pH-sensitive polymers: Classification and some fine potential applications, Polymers for Advanced Technologies 32 (4) (2021) 1455-1484. DOI:

Singh N. K., and Lee D. S. - In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery, Journal of Controlled Release 193 (2014) 214-227. DOI:

Huynh C. T., Nguyen M. K., and Lee D. S. - Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications, Macromolecules 44 (17) (2011) 6629-6636. DOI:

Shim W. S., Kim J. H., Park H., Kim K., Chan Kwon I., and Lee D. S. - Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(ε-caprolactone-co-lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-lactide) block copolymer, Biomaterials 27 (30) (2006) 5178-5185. DOI:

Nguyen D. T., Kim B. S., Lee D. S., Thambi T., and Huynh D. P. - Amino acid functionalized pH-and temperature-sensitive biodegradable injectable hydrogels: synthesis, physicochemical characterization and in vivo degradation kinetics, Int. J. Polym. Mater. Polym. Biomater 68 (15) (2019) 891-900. DOI:

Huynh D. P., Nguyen M. K., Pi B. S., Kim M. S., Chae S. Y., Lee K. C., . . . Lee D. S. - Functionalized injectable hydrogels for controlled insulin delivery, Biomaterials 29 (16) (2008) 2527-2534. DOI:

Huynh C. T., Nguyen M. K., Huynh D. P., Kim S. W., and Lee D. S. - pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane) copolymer hydrogels, Polymer 51 (17) (2010) 3843-3850. DOI:

Tri D. N., and Huynh D. P. - D, L-Serine based pH-sensitive oligoester, Vietnam J. Sci. Techno. 54 (5A) (2016) 44-55. DOI:

Le T. M. D., Nguyen V. V. L., Trinh T. A., Pham N. S., Lee D. S., and Huynh D. P. - Sulfonamide functionalized amino acid-based pH- and temperature-sensitive biodegradable injectable hydrogels: Synthesis, physicochemical characterization and in vivo degradation kinetics, J. Appl. Polym. Sci. 138 (21) (2021) 50488. DOI:

Abdul Qadir M., Ahmed M., Aslam H., Waseem S., and Shafiq M. I. - Amidine Sulfonamides and Benzene Sulfonamides: Synthesis and Their Biological Evaluation, J. Chem. 2015 (2015) 524056. DOI:

Closson W. D., Ji S., and Schulenberg S. - Mechanism of sulfonamide cleavage by arene anion radicals, J. Am. Chem. Society 92(3) (1970) 650-657. DOI:

Basu A., Farah S., Kunduru K. R., Doppalapudi S., Khan W., and Domb A. J. 8 - Polyurethanes for controlled drug delivery. In S. L. Cooper andJ. Guan (Eds.), Advances in Polyurethane Biomaterials, Woodhead Publishing, 2016, pp. 217-246. DOI:

Suganuma K., Asakura T., Oshimura M., Hirano T., Ute K., and Cheng H. N. - NMR Analysis of Poly(Lactic Acid) via Statistical Models. Polymers 11 (4) (2019) 725. DOI:

Venkatraman S. S., Jie P., Min F., Freddy B. Y. C., and Leong-Huat G. - Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier, Int. J. Pharm. 298 (1) (2005) 219-232. DOI:




How to Cite

V. V. L. . Nguyen and D. P. Huynh, “Synthesis co(benzenesulfonamide serinol-lactide) for preparation of the ph-sensitive hydrogel”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 60–68, Mar. 2022.



International Symposium on Materials Science and Engineering - ISMSE