Electrochemical CO2 reduction of rhenium tricarbonyl complex

Authors

  • Nguyen N. Phuong Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), 29TL Street, Ward Thanh Loc, District 12, Ho Chi Minh City, Viet Nam
  • Nguyen M. Tuan Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), 29TL Street, Ward Thanh Loc, District 12, Ho Chi Minh City, Viet Nam
  • Tran T. Trang Faculty of Materials Scienceand Technology, University of Science, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Viet Nam
  • Tran T. N. Anh Faculty of Materials Scienceand Technology, University of Science, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Viet Nam
  • Nam N. Dang Future Materials and Devices Lab, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Viet Nam
  • Dang V. Quang Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi, Viet Nam
  • Pham D. Khanh Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), 29TL Street, Ward Thanh Loc, District 12, Ho Chi Minh City, Viet Nam
  • Nguyen V. Khiem Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), 29TL Street, Ward Thanh Loc, District 12, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16260

Keywords:

rhenium tricarbonyl complexes, electrocatalytic reduction CO2, electrochemistry

Abstract

Carbon dioxide isconsidered asa primary reason forglobal climate change, thus CO2 needs to be urgently reduced. Catalyticconversion of CO2 into chemical fuels is oneof the most crucial technologiesthat can address both global warming and the depletion of fossil fuels. Rhenium tricarbonyl complex [Re(bpy)(CO)3Cl] (bpy: 2,2’ bipyridine) possesses a great potential of capturing and highly selective converting CO2 to carbon monoxide. In the current study, we synthesized and characterized the structure of [Re(bpy)(CO)3Cl] by 1H NMR, ESI-MS, FITR, and PL spectroscopy. The electrochemical properties and the electrochemical CO2 reduction of [Re(bpy)(CO)3Cl] in the absence and presence of an electron donor source were carried out using cyclic voltammetric measurements. The cyclic voltammogram of [Re(bpy)(CO)3Cl] in N2-saturated DMF solution displayedone irreversible reduction wave at -1.33 V. [Re(bpy)(CO)3Cl] expressedits electrocatalytic behavior in CO2 atmosphere by the enhancement of the cathodic current density. The current increased approximately twofold in CO2-saturated DMF solution(from 0.15 to 0.32 mA/cm2)and more enhancement when adding TEOA solvent. With the presence of an electron donor, the CO2 reduction efficiency of [Re(bpy)(CO)3Cl] was improved and represented by an approximately fourfold increase in cathodic current from 0.32 to 1.12 mA/cm2. One-electron reduced species of [Re(bpy)(CO)3Cl] observed at 1.33 V in N2 and CO2-saturated electrolytescontributedto the reaction with CO2.

Downloads

Download data is not yet available.

References

Mikkelsen M., Jørgensen M., and Krebs F. C. - The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3 (2010) 43-81. https://doi.org/10.1039/B912904A DOI: https://doi.org/10.1039/B912904A

Lu Q., Rosen J., and Jiao F. - Nanostructured metallic electrocatalysts for carbon dioxide reduction, Chem. Cat. Chem. 7 ( 2015) 38-47. https://doi.org/10.1002/cctc.201402669 DOI: https://doi.org/10.1002/cctc.201402669

Shah C., Raut S., Kacha H., Patel H. and Shah M. - Carbon capture using membrane-based materials and its utilization pathways, Chem. Pap. 75 (2021) 4413-4429. https://doi.org/10.1007/s11696-021-01674-z DOI: https://doi.org/10.1007/s11696-021-01674-z

Kas R., Yang K., Bohra D., Kortlever R., Burdyny T., and Smith W. A. - Electrochemical CO2 reduction on nanostructured metal electrodes: Fact or defect, Chem. Sci. 11 (2020) 1738-1749. https://doi.org/10.1039/C9SC05375A DOI: https://doi.org/10.1039/C9SC05375A

Fan L., Xia C., Yang F., Wang J., Wang H., and Lu Y. - Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products, Sci. Adv., 6 (2020) eaay3111. https://doi.org/ 10.1126/sciadv.aay3111 DOI: https://doi.org/10.1126/sciadv.aay3111

Zhang N., Wen L., Yan J., and Liu Y. - Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: a brief review, Chem. Pap. 74 (2020) 389-406. https://doi.org/ 10.1007/s11696-019-00929-0 DOI: https://doi.org/10.1007/s11696-019-00929-0

Nalaka P. L., et al. - Photochemical CO2 reduction with mononuclear and dinuclear rhenium catalysts bearing a pendant anthracene chromophore, Chem. Commun. 55 (2019) 993-996. https://doi.org/10.1039/C8CC09155B DOI: https://doi.org/10.1039/C8CC09155B

Amal E. N., et al. - Ultrafast excited-state dynamics of rhenium(I) photosensitizers [Re(Cl)(CO)3(N,N)] and [Re(imidazole)(CO)3(N,N)]+: Diimine effects. Inorg. Chem., 50 (2010) 2932–2943. https://doi.org/10.1021/ic102324p DOI: https://doi.org/10.1021/ic102324p

Liard D. J., Busby M., Matousek P., Towrie M., and Vlček A. - Picosecond relaxation of 3MLCT excited states of [Re(Etpy)(CO)3(dmb)]+ and [Re(Cl)(CO)3(bpy)] as revealed by time-resolved resonance raman, UV - vis, and IR absorption spectroscopy, J. Phys. Chem. A 108 (2004) 2363-2369. https://doi.org/10.1021/jp0366320 DOI: https://doi.org/10.1021/jp0366320

Nakajima T., Tamaki Y., Ueno K., Kato E., Nishikawa T., Ohkubo K., Yamazaki Y., Morimoto T., and Ishitani O. - Photocatalytic Reduction of Low Concentration of CO2, J. Am. Chem. Soc. 138 (2016) 13818-13821. https://doi.org/10.1021/jacs.6b08824 DOI: https://doi.org/10.1021/jacs.6b08824

Kuramochi Y. - Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord, Chem. Rev. 373 (2017) 333-356. https://doi.org/10.1016/j.ccr.2017.11.023 DOI: https://doi.org/10.1016/j.ccr.2017.11.023

Morimoto T., Nakajima T., Sawa S., Nakanishi R., Imori D., and Ishitani O. - CO2 capture by a rhenium(I) complex with the aid of triethanolamine, J. Am. Chem. Soc. 135 (2013) 16825-16828. https://doi.org/10.1021/ja409271s DOI: https://doi.org/10.1021/ja409271s

Koizumi H., Chiba H., Sugihara A., Iwamura M., Nozaki K., and Ishitani O. - CO2 capture by Mn(I) and Re(I) complexes with a deprotonated triethanolamine ligand, Chem. Sci. 10 (2019) 3080-3088. https://doi.org/10.1039/C8SC04389B DOI: https://doi.org/10.1039/C8SC04389B

Kumagai H., Nishikawa T., Koizumi H., Yatsu T., Sahara G., Yamazaki Y., Tamaki Y., and Ishitani O. - Electrocatalytic reduction of low concentration CO2, Chem. Sci., 10 (2019) 1597-1606. https://doi.org/10.1039/C8SC04124E DOI: https://doi.org/10.1039/C8SC04124E

Takeda H. and Ishitani O. - Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies, Coord. Chem. Rev., 254 (2010) 346-354.

https://doi.org/10.1016/j.ccr.2009.09.030 DOI: https://doi.org/10.1016/j.ccr.2009.09.030

Alama P., Climent C., Alemany P., and Laskara I. R. - Aggregation-induced emission of transition metal compounds: Design, mechanistic insights, and applications, J. Photochem. Photobiol. C: Photochem. Rev. 41 (2019) 100317. DOI: https://doi.org/10.1016/j.jphotochemrev.2019.100317

https://doi.org /10.1016/j.jphotochemrev.2019.100317

Ranasinghe K., Handunnetti S., Perera I. C., and Perera T. - Synthesis and characterization of novel rhenium(I) complexes towards potential biological imaging applications, Chem. Cen. J. 10 (2016) 71. https://doi.org/10.1186/s13065-016-0218-4 DOI: https://doi.org/10.1186/s13065-016-0218-4

Sato S., Morimoto T. and Ishitani O. - Photochemical synthesis of mer-[Re(bpy)(CO)3Cl], Inorg. Chem. 46 (2007) 9051-9053. https://doi.org/10.1021/ic701458h DOI: https://doi.org/10.1021/ic701458h

Saucedo C. and Grice K. A. - Synthesis and studies of cyclopentadienyl molybdenum complexes, DePaul Discoveries 5 (2016) 2.

Van Wallendael S., Shaver R. J., Rillema D. P., Yoblinski B. J., Stathis M., and Guarr T. F. - Ground-state and excited-state properties of monometallic and bimetallic complexes based on rhenium(I) tricarbonyl chloride: effect of an insulating vs a conducting bridge, Inorg. Chem. 29 (1990) 1761-1767. https://doi.org/10.1021/ic00334a033 DOI: https://doi.org/10.1021/ic00334a033

Hori H. - Electrospray mass spectrometric detection of neutral metal bipyridine complexes using sodium ions and its application in the analysis of a photochemical ligand substitution reaction, Analytical Sci. 14 (1998) 287-292.

https://doi.org/10.2116/analsci.14.287 DOI: https://doi.org/10.2116/analsci.14.287

Cannizzo A. et al. - Femtosecond fluorescence and intersystem crossing in rhenium(I) carbonyl-bipyridine complexes, J. Am. Chem. Soc. 130 (2008) 8967-8974. https://doi.org/10.1021/ja710763w DOI: https://doi.org/10.1021/ja710763w

Sato S. - Photochemistry of fac-[Re(bpy)(CO)3Cl], Chem. A Eur. J. 18 (2012) 15722-15734. https://doi.org/10.1002/chem.201202734 DOI: https://doi.org/10.1002/chem.201202734

Sinha S., Ellan K. Berdichevsky, and Jeffrey J. Warren - Electrocatalytic CO2 reduction using rhenium(I) complexes with modified 2-(2´-pyridyl)imidazole ligands, Inorg. Chim. Acta 462 (2017) 63-68. https://doi.org/10.1016/j.ica.2016.09.019 DOI: https://doi.org/10.1016/j.ica.2016.09.019

Johnson F. P. A., George M. W., Hartl F., and Turner J. J. - Electrocatalytic reduction of CO2 using the complexes [Re(bpy)(CO)3L]n (n=+1, L=P(OEt)3, CH3CN; n =0, L=Cl-, Otf-; bpy=2,2' - bipyridine; Otf- =CF3SO3) as catalyst precursors: Infrared spectroelectrochemical investigation, Organometallics 15 (1996) 3374-3387. https://doi.org/10.1021/om960044 DOI: https://doi.org/10.1021/om960044+

Downloads

Published

2022-03-11

How to Cite

[1]
N. N. Phuong, “Electrochemical CO2 reduction of rhenium tricarbonyl complex”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 125–134, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE