Phase-separated porous PVDF-CO-HFP thin film for High-power triboelectric nanogenerator

Authors

  • Ngoc Mai Chau Department of Polymer Materials, Polymer Research Center, Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam
  • Thu Ha Le Department of Polymer Materials, Polymer Research Center, Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam
  • Dai Phu Huynh Department of Polymer Materials, Polymer Research Center, Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam
  • Thi Hien Truong Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi, Viet Nam
  • Thi Thai Ha La Department of Polymer Materials, Polymer Research Center, Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam
  • Tien Bui Van Department of Polymer Materials, Polymer Research Center, Faculty of Materials Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., District 10, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16244

Keywords:

Triboelectric nanogenerator, porous structure, phase separation, PVDF-co-HFP

Abstract

Triboelectric nanogenerator (TENG), one of the latest and most effective technologies to harvest green energy in the industrialization and modernization era, converts mechanical energy to electricity through triboelectrification and electrostatic induction. Herein, highly porous poly(vinylidene fluoride-co-hexafluoropropylene) (PDVF-co-HFP) as a negatively charged tribomaterial was assembled with microdome-patterned chitosan as a positively charged surface to fabricate TENG and examine its mechanical and electrical properties. The results revealed that the porous PVDF-co-HFP-based TENG could generate a maximum instantaneous power of 3 mW and an open-circuit voltage of 200 V, which is 4 times higher than that made from flat PVDF-co-HFP and could light up 102 LEDs. The newly developed PVDF-co-HFP-based TENG achieves a great convergence between excellent flexibility, scalability, and superior electrical output, which has great application potential in wearable electronic devices.

Downloads

Download data is not yet available.

References

Fan F. R., Tian Z. Q., Lin Wang Z. - Flexible triboelectric generator, Nano Energy 1 (2012) 328-334. doi:10.1016/j.nanoen.2012.01.004. DOI: https://doi.org/10.1016/j.nanoen.2012.01.004

Wang Z. L. - Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors, ACS Nano 7 (2013) 9533-9557. doi:10.1021/nn404614z. DOI: https://doi.org/10.1021/nn404614z

Zhou L., Liu D., Wang J., Wang Z. L. - Triboelectric nanogenerators: Fundamental physics and potential applications, Friction 8 (2020) 481-506. doi:10.1007/s40544-020-0390-3. DOI: https://doi.org/10.1007/s40544-020-0390-3

Zhang X. S., Han M., Kim B., Bao J. F., Brugger J., Zhang H. - All-in-one self-powered flexible microsystems based on triboelectric nanogenerators, Nano Energy 47 (2018) 410-426. doi:10.1016/j.nanoen.2018.02.046. DOI: https://doi.org/10.1016/j.nanoen.2018.02.046

Muthu M., Pandey R., Wang X., Chandrasekhar A., Palani I. A., Singh V. - Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application, Nano Energy 78 (2020) 105205.

doi:10.1016/j.nanoen.2020.105205. DOI: https://doi.org/10.1016/j.nanoen.2020.105205

Cheedarala R. K., Song J. Il. - Sand-polished Kapton film and aluminum as source of electron transfer triboelectric nanogenerator through vertical contact separation mode, Int. J. Smart Nano Mater. 11 (2020) 38-46. doi:10.1080/19475411.2020.1727991. DOI: https://doi.org/10.1080/19475411.2020.1727991

Kim D., Jeon S. B., Kim J. Y., Seol M. L., Kim S. O., Choi Y. K. - High-performance nanopattern triboelectric generator by block copolymer lithography, Nano Energy. 12 (2015) 331-338. doi:10.1016/j.nanoen.2015.01.008. DOI: https://doi.org/10.1016/j.nanoen.2015.01.008

Pan R., Xuan W., Chen J., Dong S., Jin H., Wang X., Li H., Luo J. - Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films, Nano Energy 45 (2018) 193-202. doi:10.1016/j.nanoen.2017.12.048. DOI: https://doi.org/10.1016/j.nanoen.2017.12.048

Mi H. Y., Jing X., Meador M. A. B., Guo H., Turng L. S., Gong S. - Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits, ACS Appl. Mater. Interfaces 10 (2018) 30596-30606. doi:10.1021/acsami.8b08098. DOI: https://doi.org/10.1021/acsami.8b08098

Wang J., Wu C., Dai Y., Zhao Z., Wang A., Zhang T., Wang Z. L. - Achieving ultrahigh triboelectric charge density for efficient energy harvesting, Nat. Commun. 8 (2017) 1-7. doi:10.1038/s41467-017-00131-4. DOI: https://doi.org/10.1038/s41467-017-00131-4

Kim J. N., Lee J., Go T. W., Rajabi-Abhari A., Mahato M., Park J. Y., Lee H., Oh I. K. - Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator, Nano Energy 75 (2020) 104904. doi:10.1016/j.nanoen.2020.104904. DOI: https://doi.org/10.1016/j.nanoen.2020.104904

Ochoa N. A., Masuelli M., Marchese J. - Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes, J. Memb. Sci. 226 (2003) 203-211. doi:10.1016/j.memsci.2003.09.004. DOI: https://doi.org/10.1016/j.memsci.2003.09.004

Chen L., Si Y., Zhu H., Jiang T., Guo Z. - A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions, J. Memb. Sci. 520 (2016) 760-768.

doi:10.1016/j.memsci.2016.08.026. DOI: https://doi.org/10.1016/j.memsci.2016.08.026

Tan X. M., Rodrigue D. - A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride), Polymers (Basel) 11 (2019). DOI: https://doi.org/10.3390/polym11071160

Zhang Y., Bowen C. R., Deville S. - Ice-templated poly(vinylidene fluoride) ferroelectrets, Soft Matter. 15 (2019) 825–832. doi:10.1039/c8sm02160k. DOI: https://doi.org/10.1039/C8SM02160K

Ghaffar A., Zhang L., Zhu X., Chen B. - Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water, Environ. Sci. Technol. 52 (2018) 4265-4274. doi:10.1021/acs.est.7b06081. DOI: https://doi.org/10.1021/acs.est.7b06081

Hu Y., Kang W., Fang Y., Xie L., Qiu L., Jin T. - Piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor for wrist motion signal detection, Appl. Sci. 8 (2018). doi:10.3390/app8050836. DOI: https://doi.org/10.3390/app8050836

Kalimuldina G., Turdakyn N., Abay I., Medeubayev A., Nurpeissova A., Adair D., Bakenov Z. - A review of piezoelectric pvdf film by electrospinning and its applications, Sensors (Switzerland). 20 (2020) 1-42. doi:10.3390/s20185214. DOI: https://doi.org/10.3390/s20185214

Szewczyk P. K., Gradys A., Kim S. K., Persano L., Marzec M., Kryshtal A., Busolo T., Toncelli A., Pisignano D., Bernasik A., Kar-Narayan S., Sajkiewicz P., Stachewicz U. - Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting, ACS Appl. Mater. Interfaces. 12 (2020) 13575-13583. doi:10.1021/acsami.0c02578. DOI: https://doi.org/10.1021/acsami.0c02578

Rana S. M. S., Rahman M. T., Salauddin M., Sharma S., Maharjan P., Bhatta T., Cho H., Park C., Park J. Y. - Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances, ACS Appl. Mater. Interfaces. 13 (2021) 4955-4967. doi:10.1021/acsami.0c17512. DOI: https://doi.org/10.1021/acsami.0c17512

Oh S., Nguyen V. H., Bui V. T., Nam S., Mahato M., Oh I. K. - Intertwined Nanosponge Solid-State Polymer Electrolyte for Rollable and Foldable Lithium-Ion Batteries, ACS Appl. Mater. Interfaces 12 (2020) 11657-11668. doi:10.1021/acsami.9b22127. DOI: https://doi.org/10.1021/acsami.9b22127

Bui V. T., Ko S. H., Choi H. S. - Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern, ACS Appl. Mater. Interfaces. 7 (2015) 10541-10547. doi:10.1021/acsami.5b02097. DOI: https://doi.org/10.1021/acsami.5b02097

Jung J. T., Kim J. F., Wang H. H., di Nicolo E., E. Drioli, Lee Y. M. - Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Memb. Sci. 514 (2016) 250-263. doi:10.1016/j.memsci.2016.04.069. DOI: https://doi.org/10.1016/j.memsci.2016.04.069

Marino T., Russo F., Figoli A. - The formation of polyvinylidene fluoride membranes with tailored properties via vapour/non-solvent induced phase separation, Membranes (Basel) 8 (2018) 1-17. doi:10.3390/membranes8030071. DOI: https://doi.org/10.3390/membranes8030071

Chieng B. W., Ibrahim N. A., Yunus W. M. Z. W., Hussein M. Z. - Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets, Polymers (Basel). 6 (2014) 93-104. doi:10.3390/polym6010093. DOI: https://doi.org/10.3390/polym6010093

Xu C., Shi X., Ji A., Shi L., Zhou C., Cui Y. - Fabrication and characteristics of reduced graphene oxide produced with different green reductants, PLoS One. 10 (2015). doi:10.1371/journal.pone.0144842. DOI: https://doi.org/10.1371/journal.pone.0144842

Wu C., Wang A. C., Ding W., Guo H., Wang Z. L. - Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv. Energy Mater. 9 (2019) 1-25. doi:10.1002/aenm.201802906. DOI: https://doi.org/10.1002/aenm.201802906

Rathore S., Sharma S., Swain B. P., Ghadai R. K. - A Critical Review on Triboelectric Nanogenerator, IOP Conf. Ser. Mater. Sci. Eng. 377 (2018). doi:10.1088/1757-899X/377/1/012186. DOI: https://doi.org/10.1088/1757-899X/377/1/012186

Downloads

Published

2022-03-11

How to Cite

[1]
N. M. Chau, T. H. Le, D. P. Huynh, T. H. Truong, T. T. H. La, and T. Bui Van, “Phase-separated porous PVDF-CO-HFP thin film for High-power triboelectric nanogenerator”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 51–59, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE