Phase-separated porous PVDF-CO-HFP thin film for High-power triboelectric nanogenerator
DOI:
https://doi.org/10.15625/2525-2518/16244Keywords:
Triboelectric nanogenerator, porous structure, phase separation, PVDF-co-HFPAbstract
Triboelectric nanogenerator (TENG), one of the latest and most effective technologies to harvest green energy in the industrialization and modernization era, converts mechanical energy to electricity through triboelectrification and electrostatic induction. Herein, highly porous poly(vinylidene fluoride-co-hexafluoropropylene) (PDVF-co-HFP) as a negatively charged tribomaterial was assembled with microdome-patterned chitosan as a positively charged surface to fabricate TENG and examine its mechanical and electrical properties. The results revealed that the porous PVDF-co-HFP-based TENG could generate a maximum instantaneous power of 3 mW and an open-circuit voltage of 200 V, which is 4 times higher than that made from flat PVDF-co-HFP and could light up 102 LEDs. The newly developed PVDF-co-HFP-based TENG achieves a great convergence between excellent flexibility, scalability, and superior electrical output, which has great application potential in wearable electronic devices.
Downloads
References
Fan F. R., Tian Z. Q., Lin Wang Z. - Flexible triboelectric generator, Nano Energy 1 (2012) 328-334. doi:10.1016/j.nanoen.2012.01.004. DOI: https://doi.org/10.1016/j.nanoen.2012.01.004
Wang Z. L. - Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors, ACS Nano 7 (2013) 9533-9557. doi:10.1021/nn404614z. DOI: https://doi.org/10.1021/nn404614z
Zhou L., Liu D., Wang J., Wang Z. L. - Triboelectric nanogenerators: Fundamental physics and potential applications, Friction 8 (2020) 481-506. doi:10.1007/s40544-020-0390-3. DOI: https://doi.org/10.1007/s40544-020-0390-3
Zhang X. S., Han M., Kim B., Bao J. F., Brugger J., Zhang H. - All-in-one self-powered flexible microsystems based on triboelectric nanogenerators, Nano Energy 47 (2018) 410-426. doi:10.1016/j.nanoen.2018.02.046. DOI: https://doi.org/10.1016/j.nanoen.2018.02.046
Muthu M., Pandey R., Wang X., Chandrasekhar A., Palani I. A., Singh V. - Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application, Nano Energy 78 (2020) 105205.
doi:10.1016/j.nanoen.2020.105205. DOI: https://doi.org/10.1016/j.nanoen.2020.105205
Cheedarala R. K., Song J. Il. - Sand-polished Kapton film and aluminum as source of electron transfer triboelectric nanogenerator through vertical contact separation mode, Int. J. Smart Nano Mater. 11 (2020) 38-46. doi:10.1080/19475411.2020.1727991. DOI: https://doi.org/10.1080/19475411.2020.1727991
Kim D., Jeon S. B., Kim J. Y., Seol M. L., Kim S. O., Choi Y. K. - High-performance nanopattern triboelectric generator by block copolymer lithography, Nano Energy. 12 (2015) 331-338. doi:10.1016/j.nanoen.2015.01.008. DOI: https://doi.org/10.1016/j.nanoen.2015.01.008
Pan R., Xuan W., Chen J., Dong S., Jin H., Wang X., Li H., Luo J. - Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films, Nano Energy 45 (2018) 193-202. doi:10.1016/j.nanoen.2017.12.048. DOI: https://doi.org/10.1016/j.nanoen.2017.12.048
Mi H. Y., Jing X., Meador M. A. B., Guo H., Turng L. S., Gong S. - Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits, ACS Appl. Mater. Interfaces 10 (2018) 30596-30606. doi:10.1021/acsami.8b08098. DOI: https://doi.org/10.1021/acsami.8b08098
Wang J., Wu C., Dai Y., Zhao Z., Wang A., Zhang T., Wang Z. L. - Achieving ultrahigh triboelectric charge density for efficient energy harvesting, Nat. Commun. 8 (2017) 1-7. doi:10.1038/s41467-017-00131-4. DOI: https://doi.org/10.1038/s41467-017-00131-4
Kim J. N., Lee J., Go T. W., Rajabi-Abhari A., Mahato M., Park J. Y., Lee H., Oh I. K. - Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator, Nano Energy 75 (2020) 104904. doi:10.1016/j.nanoen.2020.104904. DOI: https://doi.org/10.1016/j.nanoen.2020.104904
Ochoa N. A., Masuelli M., Marchese J. - Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes, J. Memb. Sci. 226 (2003) 203-211. doi:10.1016/j.memsci.2003.09.004. DOI: https://doi.org/10.1016/j.memsci.2003.09.004
Chen L., Si Y., Zhu H., Jiang T., Guo Z. - A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions, J. Memb. Sci. 520 (2016) 760-768.
doi:10.1016/j.memsci.2016.08.026. DOI: https://doi.org/10.1016/j.memsci.2016.08.026
Tan X. M., Rodrigue D. - A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride), Polymers (Basel) 11 (2019). DOI: https://doi.org/10.3390/polym11071160
Zhang Y., Bowen C. R., Deville S. - Ice-templated poly(vinylidene fluoride) ferroelectrets, Soft Matter. 15 (2019) 825–832. doi:10.1039/c8sm02160k. DOI: https://doi.org/10.1039/C8SM02160K
Ghaffar A., Zhang L., Zhu X., Chen B. - Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water, Environ. Sci. Technol. 52 (2018) 4265-4274. doi:10.1021/acs.est.7b06081. DOI: https://doi.org/10.1021/acs.est.7b06081
Hu Y., Kang W., Fang Y., Xie L., Qiu L., Jin T. - Piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor for wrist motion signal detection, Appl. Sci. 8 (2018). doi:10.3390/app8050836. DOI: https://doi.org/10.3390/app8050836
Kalimuldina G., Turdakyn N., Abay I., Medeubayev A., Nurpeissova A., Adair D., Bakenov Z. - A review of piezoelectric pvdf film by electrospinning and its applications, Sensors (Switzerland). 20 (2020) 1-42. doi:10.3390/s20185214. DOI: https://doi.org/10.3390/s20185214
Szewczyk P. K., Gradys A., Kim S. K., Persano L., Marzec M., Kryshtal A., Busolo T., Toncelli A., Pisignano D., Bernasik A., Kar-Narayan S., Sajkiewicz P., Stachewicz U. - Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting, ACS Appl. Mater. Interfaces. 12 (2020) 13575-13583. doi:10.1021/acsami.0c02578. DOI: https://doi.org/10.1021/acsami.0c02578
Rana S. M. S., Rahman M. T., Salauddin M., Sharma S., Maharjan P., Bhatta T., Cho H., Park C., Park J. Y. - Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances, ACS Appl. Mater. Interfaces. 13 (2021) 4955-4967. doi:10.1021/acsami.0c17512. DOI: https://doi.org/10.1021/acsami.0c17512
Oh S., Nguyen V. H., Bui V. T., Nam S., Mahato M., Oh I. K. - Intertwined Nanosponge Solid-State Polymer Electrolyte for Rollable and Foldable Lithium-Ion Batteries, ACS Appl. Mater. Interfaces 12 (2020) 11657-11668. doi:10.1021/acsami.9b22127. DOI: https://doi.org/10.1021/acsami.9b22127
Bui V. T., Ko S. H., Choi H. S. - Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern, ACS Appl. Mater. Interfaces. 7 (2015) 10541-10547. doi:10.1021/acsami.5b02097. DOI: https://doi.org/10.1021/acsami.5b02097
Jung J. T., Kim J. F., Wang H. H., di Nicolo E., E. Drioli, Lee Y. M. - Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Memb. Sci. 514 (2016) 250-263. doi:10.1016/j.memsci.2016.04.069. DOI: https://doi.org/10.1016/j.memsci.2016.04.069
Marino T., Russo F., Figoli A. - The formation of polyvinylidene fluoride membranes with tailored properties via vapour/non-solvent induced phase separation, Membranes (Basel) 8 (2018) 1-17. doi:10.3390/membranes8030071. DOI: https://doi.org/10.3390/membranes8030071
Chieng B. W., Ibrahim N. A., Yunus W. M. Z. W., Hussein M. Z. - Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets, Polymers (Basel). 6 (2014) 93-104. doi:10.3390/polym6010093. DOI: https://doi.org/10.3390/polym6010093
Xu C., Shi X., Ji A., Shi L., Zhou C., Cui Y. - Fabrication and characteristics of reduced graphene oxide produced with different green reductants, PLoS One. 10 (2015). doi:10.1371/journal.pone.0144842. DOI: https://doi.org/10.1371/journal.pone.0144842
Wu C., Wang A. C., Ding W., Guo H., Wang Z. L. - Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv. Energy Mater. 9 (2019) 1-25. doi:10.1002/aenm.201802906. DOI: https://doi.org/10.1002/aenm.201802906
Rathore S., Sharma S., Swain B. P., Ghadai R. K. - A Critical Review on Triboelectric Nanogenerator, IOP Conf. Ser. Mater. Sci. Eng. 377 (2018). doi:10.1088/1757-899X/377/1/012186. DOI: https://doi.org/10.1088/1757-899X/377/1/012186
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, Articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJS either via VJS journal portal or other channel to publish their research work in VJS agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.