Synthesis and investigation of silver doped zinc selenium Nanoparticles using mercaptopropionic acid as a surfactant for medical applications

Authors

  • Nguyen Van Khiem Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Viet Nam
  • Pham Duy Khanh Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Viet Nam
  • Nguyen Thanh Mien Department of Nano Energy Engineering, Pusan National University, Busan 609-735, South Korea
  • Nguyen T. T. Kieu Faculty of Materials Science and Technology, University of Science, VNU-HCM, Viet Nam
  • Luong Thi Bich Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16229

Keywords:

Biocompatibility of quantum dots, green quantum dots synthesis, zinc quantum dots - lysine interaction

Abstract

The synthesis of silver doped zinc selenium nanoparticles (ZnSe:Ag NPs) in aqueous medium using mercaptopropionic acid (MPA) as a surface stabilizer was carried out with the aim of having potential applications in luminescence and medicine. The optimal percentage of Ag dopant was found to be 1 %. The luminescence properties of the ZnSe:Ag particles was initially evaluated by using UV light. The UV spectrum was used to investigate the absorption of ZnSe:Ag Nanoparticles, and the interaction of ZnSe:Ag/MPA quantum dots with amino acid was investigated to determine the biocompatibility of the particles for applying to potential applications. The results showed that the fluorescence intensity of the particles was effectively improved. The photoluminescence (PL) of quantum dots (QDs) increased significantly as the amino acid concentration increased (Poly-L-Lysine). Moreover, ZnSe:Ag nanoparticles were successfully prepared with a green method of precipitation in aqueous solutions and using MPA as a stabilizer. The X-ray photoelectron spectroscopy and fourier-transform infrared spectroscopy had proved the formation of ZnSe:Ag particles and the interaction between them and the MPA stabilizer. TEM image was used to measure the size of the ZnSe:Ag (1 %) luminescent nanoparticles synthesized by green method. Besides, the XPS spectrum shows elements present in the ZnSe:Ag nanoparticle crystals.

Downloads

Download data is not yet available.

References

Chen Z. and Wu D. - Colloidal ZnSe quantum dot as pH probes for study of enzyme reaction kinetics by fluorescence spectroscopic technique. Colloid, Surface A 414 (2012) 174-179. https://doi.org/10.1016/j.colsurfa.2012.08.021 DOI: https://doi.org/10.1016/j.colsurfa.2012.08.021

Hoa T. T. Q., Long N. N., Hanh V. T. H., Chinh V. D., and Nga P. T. - Luminescent ZnS: Mn/thioglycerol and ZnS: Mn/ZnS core/shell nanocrystals: synthesis and characterization, Opt. Mater. 35 (2) (2012) 136-140. https://doi.org/10.1016/j.optmat.2012.07.018 DOI: https://doi.org/10.1016/j.optmat.2012.07.018

Kir’yanov A. V., Il’ichev N. N., Gulyamova E. S., Nasibov A. S., and Shapkin P. V. - Nonlinear Change in Refractive Index and Transmission Coefficient of ZnSe: Fe 2+ at Long-Pulse 2.94-μm Excitation, Optics and Photonics Journal 5 (1) (2015) 15. http://dx.doi.org/10.4236/opj.2015.51003 DOI: https://doi.org/10.4236/opj.2015.51003

Rosenthal, Chang S. J., Kovtun J. C., McBride O., J. R., and Tomlinson I. D. - Biocompatible quantum dots for biological applications, Chemistry & biology 18 (1) (2011) 10-24. https://dx.doi.org/10.1016%2Fj.chembiol.2010.11.013 DOI: https://doi.org/10.1016/j.chembiol.2010.11.013

Wood V., Halpert J. E., Panzer M. J., Bawendi M. G., and Bulovic V. - Alternating current driven electroluminescence from ZnSe/ZnS: Mn/ZnS nanocrystals, Nano Lett. 9 (6) (2009) 2367-2371. https://doi.org/10.1021/nl900898t DOI: https://doi.org/10.1021/nl900898t

Law W. C., Yong K. T., Roy I., Ding H., Hu R., Zhao W., and Prasad P. N. - Aqueous‐Phase Synthesis of Highly Luminescent CdTe/ZnTe Core/Shell Quantum Dots Optimized for Targeted Bioimaging, Small 5 (11) (2009) 1302-1310.

https://doi.org/10.1002/smll.200801555 DOI: https://doi.org/10.1002/smll.200801555

Thakar R., Chen Y., and Snee P. T. - Efficient emission from core/(doped) shell nanoparticles: applications for chemical sensing, Nano Lett. 7 (11) (2007) 3429-3432. https://doi.org/10.1021/nl0719168 DOI: https://doi.org/10.1021/nl0719168

Fang, Z., P. Wu, X. Zhong, and Y.-J. Yang. - Synthesis of highly luminescent Mn: ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology, 21 (30) (2010) 305604. https://doi.org/10.1088/0957-4484/21/30/305604 DOI: https://doi.org/10.1088/0957-4484/21/30/305604

Luong B. T., Hyeong E., Ji S., and Kim N. - Green synthesis of highly UV-orange emitting ZnSe/ZnS: Mn/ZnS core/shell/shell nanocrystals by a three-step single flask method, Rsc. Adv. 2 (32) (2012) 12132-12135.

DOI: https://doi.org/10.1039/C2RA21309E. DOI: https://doi.org/10.1039/c2ra21309e

Zhu D., Jiang X., Zhao C., Sun X., Zhang J., and Zhu J. J. - Green synthesis and potential application of low-toxic Mn: ZnSe/ZnS core/shell luminescent nanocrystals, Chem. Commun. 46 (29) (2010) 5226-5228. https://doi.org/10.1039/C0CC00791A DOI: https://doi.org/10.1039/c0cc00791a

Gupta P. and Ramrakhiani M. - Influence of the particle size on the optical properties of CdSe nanoparticles, The Open Nanoscience Journal 3 (1) (2009).

http://dx.doi.org/10.2174/1874140100903010015 DOI: https://doi.org/10.2174/1874140100903010015

Coe S., Woo W. K., Bawendi M., and Bulović V. - Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420 (6917) (2002) 800-803. https://doi.org/10.1038/nature01217 DOI: https://doi.org/10.1038/nature01217

Kumar P., Singh J., Ramam K., and Pandey A. C. - ZnSe/ZnSe: Ag nanoparticles: synthesis, characterizations, optical and raman studies, Journal of nanoscience and nanotechnology 13 (1) (2013) 377-383. https://doi.org/10.1166/jnn.2013.6736 DOI: https://doi.org/10.1166/jnn.2013.6736

Mir I. A., Rawat K., and Bohidar H. - Interaction of plasma proteins with ZnSe and ZnSe@ ZnS core-shell quantum dots. Colloid, Surface A 520 (2017) 131-137. https://doi.org/10.1016/j.colsurfa.2017.01.032 DOI: https://doi.org/10.1016/j.colsurfa.2017.01.032

Yazdanparast M. S., Webb M. T., and McLaurin E. J. - Single-step synthesis of hyperbranched, luminescent Mn 2+-doped ZnSe 1− x S x nanocrystals using dichalcogenide precursors, J. Mater. Chem. C 4 (28) (2016) 6907-6913.

https://doi.org/10.1039/C6TC01207H DOI: https://doi.org/10.1039/C6TC01207H

Murugadoss A. and Chattopadhyay A. - Tuning photoluminescence of ZnS nanoparticles by silver, Bulletin of Materials Science 31 (3) (2008) 533-539.

https://doi.org/10.1007/s12034-008-0083-4 DOI: https://doi.org/10.1007/s12034-008-0083-4

Bera D. and Qian L. - and Holloway. PH, Quantum Dots and Their Multimodal Applications: A Review, Materials 3 (4) (2010) 2260-2345. DOI: https://doi.org/10.3390/ma3042260

https://dx.doi.org/10.3390%2Fma3042260

Yang Y., Chen O., Angerhofer A., and Cao Y. C. - Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals, J. Am. Chem. Soc. 128 (38) (2006) 12428-12429. https://doi.org/10.1021/ja064818h DOI: https://doi.org/10.1021/ja064818h

Yang Y., Chen O., Angerhofer A., and Cao Y. C. - On doping CdS/ZnS core/shell nanocrystals with Mn, Journal of the American Chemical Society 130 (46) (2008) 15649-15661. https://doi.org/10.1021/ja805736k DOI: https://doi.org/10.1021/ja805736k

Medintz I. L., Goldman E. R., Lassman M. E., and Mauro J. M. - A fluorescence resonance energy transfer sensor based on maltose binding protein, Bioconjugate Chem. 14 (5) (2003) 909-918. https://doi.org/10.1021/bc020062+ DOI: https://doi.org/10.1021/bc020062+

Downloads

Published

2022-03-22

How to Cite

[1]
N. V. Khiem, P. D. Khanh, N. T. Mien, N. T. T. Kieu, and L. T. . Bich, “Synthesis and investigation of silver doped zinc selenium Nanoparticles using mercaptopropionic acid as a surfactant for medical applications”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 185–191, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE