Effects of synthesis conditions on structure of tin nanorods prepared by surfactant-assisted chemical reduction method

Authors

  • Vo Chi Cuong Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam
  • Ho Van Phuoc Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam
  • Vu Minh Tan Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam
  • Nguyen Truong Xuan Minh Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam
  • Huynh Ky Phuong Ha Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam
  • Nguyen Truong Son Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16222

Keywords:

organic modified nanosilica, acrylic coating, silane coupling agent, thermal properties

Abstract

Metallic nanorods/nanowires have recently become the focus of intensive research due to their unique properties and have been used to fabricate electronic, energy devices and sensors in nanoscale. In this study, tin nanorods were synthesized through a surfactant assisted chemical reduction method in aqueous solutions at low temperature (~ 0 oC). Sodium dodecyl sulfate (SDS) and sodium borohydride (NaBH4) were used as the surfactant and reductant, respectively. Parameters such as pH, surfactant concentration, and temperature were studied to control the diameter and length of the nanorods formed. The structure, composition and surface morphology of the obtained products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the morphology as well as the aspect ratio of tin nanorods could be effectively controlled by adjusting the parameters of the synthesis process. It was found that tin nanoparticles were formed at 30 oC while nanorods appeared at lower temperatures (0, 5 oC). A low SDS concentration of 4 mM helped to form Sn nanoparticles but higher SDS concentrations of 8, 12 mM facilitated the growth of nanorods. The increase of SDS concentration reduced the length of nanorods. pH values less than 4.5 were found to be favorable to the formation of nanorods.

Downloads

Download data is not yet available.

References

Ao Z., Zechuan Y., Cheuk L. C., Denvid L. - Enhanced solar spectral reflectance of thermal coatings through inorganic additives, Energy Build. 138 (2017) 641-647. https://doi.org/10.1016/j.enbuild.2016.12.027. DOI: https://doi.org/10.1016/j.enbuild.2016.12.027

Machotová J., Kalendová A., Voleská M., Steinerová D., Pejchalová M., Knotek P., Zárybnická L. - Waterborne hygienic coatings based on self-crosslinking acrylic latex with embedded inorganic nanoparticles: a comparison of nanostructured ZnO and MgO as antibacterial additives, Prog. Org. Coat. 147 (2020) 105704.

https://doi.org/10.1016/j.porgcoat.2020.105704. DOI: https://doi.org/10.1016/j.porgcoat.2020.105704

Mathiazhagan A. and Joseph, R. - Nanotechnology-A new prospective in organic coating – Review, Int. J. Chem. Eng. Appl. 2 (4) (2011) 225-237. 10.7763/IJCEA.2011.V2.108. DOI: https://doi.org/10.7763/IJCEA.2011.V2.108

Hung D. P., Vuong N. T., Hieu D. M., Linh N. T., Thanh T. V., Phuc M. V., Hiep N. A., Tien D. M. - Effect of silica nanoparticles on properties of coatings based on acrylic emulsion resin, Vietnam J. Sci. Technol. 56 (3B) (2018) 117-125. https://doi.org/10.15625/2525-2518/56/3B/12731. DOI: https://doi.org/10.15625/2525-2518/56/3B/12731

Chen G., Zhou S., Gu G., Wu L. - Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites, Coll. Surf. A 296 (1) (2007) 29-36. https://doi.org/10.1016/j.colsurfa.2006.09.016. DOI: https://doi.org/10.1016/j.colsurfa.2006.09.016

Anh B. T. M, Vuong N. T., Mai N. T., Ha H. T., Huong N. T. T., Hoan L. T., Nga,T. T., Hai N. V., Hai H. V., Lu L. T., et al. - Investigation of crosslinking, mechanical properties and weathering stability of acrylic polyurethane coating reinforced by SiO2 nanoparticles issued from rice husk ash, Mater. Chem. Phys. 241 (2020) 122445. https://doi.org/10.1016/j.matchemphys.2019.122445. DOI: https://doi.org/10.1016/j.matchemphys.2019.122445

Ramezanzadeha B., Moradiana S., Tahmasebi N., Khosravi A. - Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clear coat, Prog. Org. Coat. 72 (4) (2011) 621-631.

https://doi.org/10.1016/j.porgcoat.2011.07.003. DOI: https://doi.org/10.1016/j.porgcoat.2011.07.003

Ranjbar Z., Rastegar S. - The influence of surface chemistry of nano-silica on microstructure, optical and mechanical properties of the nanosilica containing clear-coats, Prog. Org. Coat. 65 (1) (2009) 125-130. 10.1016/j.porgcoat.2008.10.006. DOI: https://doi.org/10.1016/j.porgcoat.2008.10.006

Ranjbar Z., Rastegar S. - Nano mechanical properties of an automotive clear-coats containing nano silica particles with different surface chemistries, Prog. Org. Coat. 72 (1) (2011) 40-43. 10.1016/j.porgcoat.2010.11.001. DOI: https://doi.org/10.1016/j.porgcoat.2010.11.001

Ranjbar Z., Jannesari A., Rastegar S., Montazeri S. - Study of the influence of nanosilica particles on the curing reactions of acrylicmelamine clear-coats, Prog. Org. Coat. 66 (4) (2009) 372-376. https://doi.org/10.1016/j.porgcoat.2009.08.007. DOI: https://doi.org/10.1016/j.porgcoat.2009.08.007

Minh H. N., Chinh N. T., Van T. T. T., Hoang T. - Ternary nanocomposites based on epoxy, modified silica, and tetrabutyl titanate: Morphology, characteristics, and kinetics of the curing process, J. Appl. Polym. Sci. 136 (2019) 47412.

https://doi.org/10.1002/app.47412 DOI: https://doi.org/10.1002/app.47412

Minh H. N., Chinh N. T., Van T. T. T., Dung N. T., Hoang T. - Enhancement of dynamic mechanical properties and flame resistance of nanocomposites based on epoxy and nanosilica modified with KR-12 coupling agent, J. Appl. Polym. Sci. 138 (29) (2021) 50685. https://doi.org/10.1002/app.50685. DOI: https://doi.org/10.1002/app.50685

Tham D. Q., Chung I., Kim T., Kang J., Tan M. M., Dung N. T. K, Huynh M. D., Lam T. D., Chinh N. T., Giang,B. L., et al. - Preparation, stabilization and characterization of 3-(methacryloyloxy) propyl trimethoxy silane modified colloidal nanosilica particles, Colloids Surf. A 585 (2020) 124066. https://doi.org/10.1016/j.colsurfa.2019.124066. DOI: https://doi.org/10.1016/j.colsurfa.2019.124066

Guo Y., Wang M., Zhang H., Liu G., Zhang L., Qu X. - The surface modification of nanosilica, preparation of nanosilica/acrylic core-shell composite latex, and its application in toughening PVC matrix, J. Appl. Polym. Sci. 107 (4) (2007) 2671-2680. https://doi.org/10.1002/app.27310. DOI: https://doi.org/10.1002/app.27310

Huang W. J., Tsai H. H., Lee W. F. - Preparation and properties of thermosensitive organic-inorganic hybrid gels containing modified nanosilica, Polym. Compos. 31 (10) (2010) 1712-1721. 10.1002/pc.20961. DOI: https://doi.org/10.1002/pc.20961

Francis P., Vincent L., Jean J. R. - Modification of silica nanoparticles by grafting of copolymers containing organosilane and fluorine moities, J. Polym. Sci. A Polym. Chem. 47 (2009) 4617-4628. https://doi.org/10.1002/pola.23513. DOI: https://doi.org/10.1002/pola.23513

Mazloom-Jalali A., Taromi F. A., Atai M., Solhi L. - Dual modified nanosilica particles as reinforcing fillers for dental adhesives: Synthesis, characterization, and properties, J. Mech. Behav. Biomed. Mater. 110 (2020) 103904.

https://doi.org/10.1016/j.jmbbm.2020.103904. DOI: https://doi.org/10.1016/j.jmbbm.2020.103904

Chang C. C., Oyang T. Y., Chen Y. C., Hwang F. H., Cheng L. P. - Preparation of hydrophobic nanosilica-filled polyacrylate hard coatings on plastic substrates, J. Coat. Technol. Res. 11 (3) (2013) 381-386. 10.1007/s11998-013-9540-0. DOI: https://doi.org/10.1007/s11998-013-9540-0

Sala R. L., Arantes T. M., Longo E., Leite E. R., Paranhos C. M., Camargo E. R. - Evaluation of modified silica nanoparticles in carboxylated nitrile rubber nanocomposites, Colloids Surf. A 462 (2014) 45-51.

http://dx.doi.org/10.1016/j.colsurfa.2014.08.012. DOI: https://doi.org/10.1016/j.colsurfa.2014.08.012

Chinh N. T., Dung N. T., Toan V. D., Phuong D. D., Hiep N. A., Lien L. T. N., Hung D. P., Len N. T., Giang B. L., and Hoang T. - Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl) propyl methacrylate silane coupling agent, J. Chem., 2020 (2020) 1381407. https://doi.org/10.1155/2020/1381407. DOI: https://doi.org/10.1155/2020/1381407

Sebastian L., Ahmed A. K., Bilal F., Jose M. L. A., Monica A., Aravind V., Stuart M. H., Gyorgy S., Mohamed I. B., Nima S., et al. - Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation, J. Membr. Sci. 554 (2018) 309-323. https://doi.org/10.1016/j.memsci.2018.03.013. DOI: https://doi.org/10.1016/j.memsci.2018.03.013

Iijima M. - Surface modification of nanoparticles by silane alkoxides and their application in silicone-based polymer nanocomposites, Nanoparticle Technology Handbook, 2018, pp. 705-709. doi:10.1016/b978-0-444-64110-6.00064-0. DOI: https://doi.org/10.1016/B978-0-444-64110-6.00064-0

Jesionowski T., Zurawska J., Krysztafkiewicz A. - Surface properties and dispersion of precipitated silicas, J. Mater. Sci. 37 (2002) 1621-1633. 10.1023/A:1014936428636. DOI: https://doi.org/10.1023/A:1014936428636

Simon A., Cohen-Bouhacina T., Porté M. C., Aimé J. P. and Baquey C. - Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface, J. Colloid Interf. Sci. 251 (2002) 278-283. 10.1006/jcis.2002.8385. DOI: https://doi.org/10.1006/jcis.2002.8385

Malaki M., Hashemzadeh Y., Fadaei T. A. - Abrasion resistance of acrylic polyurethane coatings reinforced by nano-silica, Prog. Org. Coat. 125 (2018) 507-515.

https://doi.org/10.1016/j.porgcoat.2018.07.034. DOI: https://doi.org/10.1016/j.porgcoat.2018.07.034

Downloads

Published

2022-03-11

How to Cite

[1]
V. C. Cuong, H. V. . Phuoc, V. M. Tan, N. T. X. . Minh, H. K. P. Ha, and N. T. Son, “Effects of synthesis conditions on structure of tin nanorods prepared by surfactant-assisted chemical reduction method”, Vietnam J. Sci. Technol., vol. 59, no. 6A, pp. 168–175, Mar. 2022.

Issue

Section

International Symposium on Materials Science and Engineering - ISMSE