EXTRACTION OF TRITERPENOIDS FROM THE VIETNAMESE RED GANODERMA LUCIDUM BY ULTRASOUND-ASSISTED EXTRACTION METHOD AND ANTI-OXIDANT ACTIVITY OF EXTRACT

Authors

  • Nguyễn Thị Linh Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Nguyễn Tấn Tài Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Trần Đỗ Đạt Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Phan Lê Thảo My Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Ngô Thị Thùy Linh Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Nguyễn Thị Kim Ngân Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Vương Hoài Thanh Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Nguyễn Đức Việt Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Đặng Hoàng Bảo Ngọc Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Hoàng Minh Nam Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Mai Thanh Phong Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM
  • Nguyễn Hữu Hiếu Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM

DOI:

https://doi.org/10.15625/2525-2518/58/6A/15473

Keywords:

Ganoderma lucidum, ultrasound – assisted extraction, response surface methodology, triterpenoids

Abstract

An ecofriendly ultrasound – assisted extraction (UAE) method was developed for the triterpenoids extraction from Vietnamese red Ganoderma lucidum (G. lucidum). The appropriate kind of solvent for extraction procedure was selected as ethanol based on the yield of triterpenoids obtained, followed by the investigation of four single factors including solvent-to-material ratio, extraction temperature, extraction time, and ultrasonic power. According to the result of single factor experiments, optimal extraction conditions were determined with solvent-to-material ratio of 30:1 mL/g, extraction temperature of 55 , extraction time of 60 min, and ultrasonic power of 480 W. Under these conditions, UAE produced a highest triterpenoids yield of 9.7976  0.334 mg/g by using ultraviolet-visible spectroscopy (UV-Vis) analysis. Extract obtained from UAE method showed better antioxidant activity compared to that of ascorbic acid with the half-maximal inhibitory concentration values were of 32.685 and 6.902 µg/mL, respectively. As a result, triterpenoids extracted from G. lucidum could be considered as a promising antioxidant agent.

Downloads

Download data is not yet available.

References

Duvnjak D., Pantic M., Pavlovic V., Nedovic V., Levic S. L.,Matijasevic D., Sknepnek A., and Niksic M. - Advances in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds, Innovative Food Sci. Emerging Technol. 34 (2016) 1-8. https://doi.org/10.1016/j.ifset.2015.12.028.

Chen X., Zhang X., Ma Y., Deng Z., Geng C., and Chen J. - Iridal-type triterpenoids with anti-HBV activity from Iris confusa, Fitoterapia. 129 (2018) 126-132. https://doi.org/10.1016/j.fitote.2018.06.005.

Rodriguez-Rodriguez R. - Oleanolic acid and related triterpenoids from olives on vascular function: molecular mechanisms and therapeutic perspectives, Curr. Med. Chem.22(11)(2015)1414-1425. https://www.ingentaconnect.com/content/ben/cmc/2015/00000022/00000011/art00009.

Eom H. J., Kang H. R., Kim H. K., Jung E. B., Park H. B., Kang K. S., and Kim K. H. -Bioactivity-guided isolation of antioxidant triterpenoids from Betula platyphylla var. japonica bark, Bioorg. Chem. 66 (2016) 97-101. https://doi.org/10.1016/j.bioorg.2016.04.001.

Eom H. J., Kang H. R., Choi S. U., and Kim K. H. - Cytotoxic Triterpenoids from the Barks of Betula platyphylla var. japonica, Chem. Biodiversity. 14 (4) (2017) 1600400.

El-Mekkawy S., Meselhy M. R., Nakamura N., Tezuka Y.,Hattori M., Kakiuchi N., Shimotohno K., Kawahata T., and Otake T. - Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum, Phytochemistry. 49 (6) (1998) 1651-1657. https://doi.org/10.1016/S0031-9422(98)00254-4.

Kim H. W. and Kim B. K. - Biomedicinal triterpenoids of Ganoderma lucidum (Curt.: Fr.) P. Karst.(Aphyllophoromycetideae), Int. J. Med. Mushrooms. 1 (2) (1999). 10.1615/IntJMedMushrooms.v1.i2.20.

Wang J. L., Li Y. B., Liu R. M., and Zhong J. J. - A new ganoderic acid from Ganoderma lucidum mycelia, J. Asian Nat. Prod. Res. 12 (8) (2010) 727-730. https://doi.org/10.1080/10286020.2010.493506.

Zhu L. F., Zheng Y., Fan J., Yao Y., Ahmad Z., and Chang M. W. - A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma, Eur. J. Pharm. Sci. 137 (2019) 105002. https://doi.org/10.1016/j.ejps.2019.105002.

Zhu L. F., Yao Y., Ahmad Z., and Chang M. W. - Development of Ganoderma lucidum spore powder based proteoglycan and its application in hyperglycemic, antitumor and antioxidant function, Process Biochemistry 84 (2019) 103-111. https://doi.org/10.1002/cbdv.201600400.

Yoo K. H., Park J. H., Lee D. Y., Hwang‐Bo J., Baek N. I., and Chung I. S. - Corosolic acid exhibits anti‐angiogenic and anti‐lymphangiogenic effects on in vitro endothelial cells and on an in vivo CT‐26 colon carcinoma animal model, Phytother. Res. 29 (5) (2015) 714-723. https://doi.org/10.1002/ptr.5306.

Tiwari B. K. - Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry. 71 (2015) 100-109. https://doi.org/10.1016/j.trac.2015.04.013.

Vilkhu K., Mawson R., Simons L., and Bates D. - Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Sci. Emerging Technol. 9 (2) (2008) 161-169. https://doi.org/10.1016/j.ifset.2007.04.014.

Hromadkova Z., Ebringerova A., and Valachovič P. - Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrasonics Sonochem. 5 (4) (1999) 163-168. https://doi.org/10.1016/S1350-4177(98)00046-7.

Shirsath S. R., Sonawane S. H., and Gogate P. R. - Intensification of extraction of natural products using ultrasonic irradiations - A review of current status. Chemical Engineering and Processing: Process Intensification. 53 (2012) 10-23. https://doi.org/10.1016/j.cep.2012.01.003

Esclapez M. D., García-Pérez J. V., Mulet A., and Cárcel J. A. - Ultrasound-assisted extraction of natural products. Food Eng. Rev. 3 (2) (2011) 108. https://doi.org/10.1007/s12393-011-9036-6.

Oludemi Taofiq, Lillian Barros, M.A. Prieto, Sandrina A. Heleno, Maria F. Barreiro, and Isabel C.F.R. Ferreira - Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the Response Surface Methodology. Food Funct. 9 (1) (2018) 209-226. https://doi.org/10.1039/C7FO01601H.

Wang B. J., Lien Y. H., and Yu Z. R. - Supercritical fluid extractive fractionation–study of the antioxidant activities of propolis. Food Chem. 86 (2) (2004) 237-243. https://doi.org/10.1016/j.foodchem.2003.09.031.

Truong D. H., Nguyen D. H., Ta N. T. A., Bui A. V., Do T. H., and Nguyen H. C. -Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia, J. Food Qual. (2019) 2019. https://doi.org/10.1155/2019/8178294.

Wei L., Zhang W., Yin L., Yan F., Xu Y., and Chen F. - Extraction optimization of total triterpenoids from Jatropha curcas leaves using response surface methodology and evaluations of their antimicrobial and antioxidant capacities. Electron. J. Biotechnol. 18 (2) (2015) 88-95. http://dx.doi.org/10.1016/j.ejbt.2014.12.005.

Mandal V. and Mandal S. C. - Design and performance evaluation of a microwave based low carbon yielding extraction technique for naturally occurring bioactive triterpenoid: Oleanolic acid. Biochem. Eng. J. 50 (1-2) (2010) 63-70. https://doi.org/10.1016/j.bej.2010.03.005.

Li J., Zu Y. G., Fu Y. J., Yang Y. C., Li S. M., Li Z. N., and Wink M.- Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innovative Food Sci. Emerging Technol. 11 (4) (2010) 637-643.

https://doi.org/10.1016/j.ifset.2010.06.004.

Xia E. Q., Yu Y. Y., Xu X. R., Deng G. F., Guo Y. J., and Li H. B.- Ultrasound-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. Ultrason. Sonochem. 19 (4) (2012) 772-776. https://doi.org/10.1016/j.ultsonch.2011.11.014.

Quan Y., Chuan L., Zhenhua D., Bing L., Weiwen D., and Feifei S. - Ultrasonic microwave-assisted extraction of polyphenols, flavonoids, triterpenoids, and vitamin C from Clinacanthus nutans, Czech J. Food Sci. 35 (1) (2017) 89-94. https://www.agriculturejournals.cz/publicFiles/82_2016-CJFS.pdf.

Shen S. F., Zhu L. F., Wu Z., Wang G., Ahmad Z., and Chang M. W. - Production of triterpenoid compounds from Ganoderma lucidum spore powder using ultrasound-assisted extraction. Prep. Biochem. Biotechnol. (2019) 1-14. https://doi.org/10.1080/10826068.2019.1692218.

Cai C., Ma J., Han C., Jin Y., Zhao G., and He X.- Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang, Sci. Rep. 9 (1) (2019) 1-10. https://doi.org/10.1038/s41598-019-43886-0.

Chen Y., Xie M. Y., and Gong X. F. - Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng. 81 (1) (2007) 162-170. https://doi.org/10.1016/j.jfoodeng.2006.10.018.

Zhao B., Zhao W., and Yuan Z. - Optimization of extraction method for total saponins from Codonopsis lanceolata. Asian J. Tradit. Med. 7 (1) (2012) 14-17. https://scholar.google.com/scholar?hl=vi&as_sdt=0%2C5&q=Optimization+of+extraction+method+for+total+saponins+from+Codonopsis+lanceolata&btnG=.

P. Rani, Merlin Rajesh Lal, Uma Maheshwari, and Sreeran Krishnan - Antioxidant Potential of Lingzhi or reishi Medicinal Mushroom, Ganaderma lucidum ( Higher Basidiomycetes) Cultivated on Artcarpus heterophyllus Sawdust Substrate in India. International Journal of Medicinal Mushroom 12 (2015) 1171-1177.

Kang Q., Chen S., Li S., Wang B., Liu X., Hao L., and Lu J. - Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int. J. Biol. Macromol. 124 (2018) 1137-1144. https://doi.org/10.1016/j.ijbiomac.2018.11.215.

Lu J., He R., Sun P., Zhang F., Linhardt J. R., and Zhang A. - Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int. J. Biol. Macromol. 150 (2020) 765-774. https://doi.org/10.1016/j.ijbiomac.2020.02.035.

Downloads

Published

2021-03-31

Issue

Section

The 7th National Workshop on Research and Development of Natural Products