EFFECT OF TEMPERATURE ON THE STRUCTURE AND PROPERTIES OF Fe2O3/GRAPHENE NANOCOMPOSITES SYNTHESIZED BY HYDROTHERMAL METHOD

Authors

  • Khai Tran Van Faculty of Materials Technology, Ho Chi Minh city University of Technology, VietNam National University, Ho Chi Minh City, Viet Nam
  • Vinh Nguyen Quang Faculty of Materials Technology, Ho Chi Minh city University of Technology, VietNam National University, Ho Chi Minh City, Viet Nam
  • Thang Le Van Faculty of Materials Technology, Ho Chi Minh city University of Technology, VietNam National University, Ho Chi Minh City, Viet Nam
  • Phong Mai Thanh Ho Chi Minh city University of Technology, VietNam National University, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/57/3A/14105

Keywords:

Fe2O3/graphene, nanocomposite, graphene, hydrothermal method

Abstract

A simple and straightforward approach was used to prepare Fe2O3/graphene nanocomposites with different temperature conditions. The nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and photoluminescence (PL). The results show that Fe2O3 nanoparticles with size in range of 60-100 nm are anchored on the surface and filled between the graphene nanosheets at hydrothermal reaction. The PL spectrum exhibits the emission peaks appeared at ~ 650 nm and ~ 720 nm.

Downloads

Download data is not yet available.

References

Kroto H.W., Heath J.R., Obrien S.C., Curl R.F., Smalley R.E. - C60 Buckminster fullerene, Nature 318 (1985) 162-163.

Iijima S. - Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. - Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669.

Choi W., Lee J. “Graphene: Synthesis and Applications,” in Nanomaterials and their applications, CRC press, 2012.

Sharon M., Sharon M., Tiwari A. “Graphene: An Introduction to the Fundamentals and Industrial Applications” John Wiley & Sons, 2015.

Ramanathan T., Abdala A., Stankovich S., Dikin D., Herrera-Alonso M., Piner R., Adamson D., Schniepp H., Chen, Ruoff R. - Functionalized graphene sheets forpolymer nanocomposites, Nat. Nanotechnol. 3 (2008) 327–331.

Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S. - Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498–3502.

Liu C., Yu Z., Neff D., Zhamu A., Jang B.Z. - Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863–4868.

Khai T.V., Thu L.V., Ha L.T.T, Thanh V.M., Lam T.D. - Structural, optical and gas sensing properties of vertically well-aligned ZnO nanowires grown on graphene/Si substrate by thermal evaporation method, Mater. Charact. 141 (2018) 296-317.

Xu Y., Bai H., Lu G., Li C., Shi G. - Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (2008) 5856–5857.

Xu Y., Sheng K., Li C., Shi G. - Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano 4 (2010) 4324–4330.

Eda G., Chhowalla M. - Graphene-based composite thin films for electronics, Nano Lett. 9 (2009) 814–818.

Bao Q., Zhang H., Yang J., Wang S., Tang D.Y., Jose R., Ramakrishna S., Lim C.T., Loh K.P. - Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics, Adv. Funct. Mater. 20 (2010) 782–791.

Peng C., Chen B., Qin Y., Yang S., Li C., Zuo Y., Liu S., Yang J. - Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity, ACS Nano 6 (2012) 1074–1081.

Kuhn L., Gorji N.E. - Review on the graphene/nanotube application in thin film solar cells, Mater. Lett. 171 (2016) 323–326.

Liang S.M., Zhu J.W., Wang C., Yu S.T., Bi H.P., Liu X.H., Wang X. - Fabrication of alpha Fe2O3@graphene nanostructures for enhanced gas sensing property to ethanol, Appl. Surf. Sci. 292 (2014) 278–284.

Yuan Y., Jiang W., Wang Y., Shen P., Li F., Li P., Zhao F., Gao H. - Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate, Appl. Surf. Sci. 303 (2014) 354–359.

Gollavelli G., Ling Y.C. - Multi-functional graphene as an in vitro and in vivo imaging probe, Biomaterials 33 (2012) 2532–2545.

Cho P.S., Kim K.W., Lee J.H. - NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method, J. Electroceram. 17 (2006) 975–978.

Lv X., Zhang G., Fu W. - Highly efficient hydrogen evolution using TiO2/graphene composite photocatalysts, Procedia Eng. 27 (2012) 570–576.

Lian P., Zhu X., Xiang H., Li Z., Yang W., Wang H. - Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries, Electrochim. Acta 56 (2010) 834–840.

Wang H., Liang Q.Q., Wang W.J., An Y.R., Li J.H., Guo L. - Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage, Cryst. Growth Des. 11 (2011) 2942–2947.

Ba N.N., Zhu L.J., Zhang G.Z., Li J.F., H.J. Li H.J. - Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties, Sens. Actuators B 227 (2016) 142–148.

NuLi Y., Zeng R., Zhang P., Guo Z., H. Liu H. - Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries, J. Power Sources 184 (2008) 456–461.

Sivula K., Zboril R., Formal F.L., Robert R., Weidenkaff A., Tucek J., Frydrych J., Graetzel M. - Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, J. Am. Chem. Soc. 132 (2010) 7436–7444.

Dyal A., Loos K., Noto M., Chang S.W., Spagnoli C., Shafi, K.V. Ulman A., Cowman M., Gross R.A. - Activity of Candida rugosa lipase immobilized on α-Fe2O3 magnetic nanoparticles, J. Am. Chem. Soc. 125 (2003) 1684–1685.

Kulal P.M., Dubal D.P., Lokhande C.D., Fulari V. J. - Chemical synthesis of Fe2O3 thin films for supercapacitor application, J. Alloys Compd. 509 (2011) 2567-5271.

Pradhan G.K., Parida K.M. - Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods, ACS Appl. Mater. Interfaces 3 (2011) 317–323.

Wang H.Z., Zhang X.T., Liu B., Zhao H.L., Li Y.C., Huang Y.B., Du Z.L. - Synthesis and characterization of single crystal α-Fe2O3 nanobelts, Chem. Lett. 34 (2005) 184–185.

Chueh Y.L., Lai M.W., Liang J.Q., Chou L.J., Wang Z.L. - Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process, Adv. Funct. Mater. 16 (2006) 2243–2251.

Mohapatra S.K., John S.E., Banerjee S., Misra M. - Water photo oxidation by smooth and ultrathin α-Fe2O3 nanotube arrays, Chem. Mater. 21 (2009) 3048–3055.

Yan W., Fan H., Zhai Y., Yang C., Ren P., Huang L. - Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties, Sens. Actuators B 160 (2011) 1372–1379.

Yu Q., Zhu J., Xu Z., Huang X. - Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors, Sens. Actuators B 213 (2015) 27–34.

Zhu X., Zhu Y., Murali S., Stoller M.D., R.S. Ruoff R.S. - Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries, ACS Nano 5 (2011) 3333–3338.

Wang G., Liu T., Luo Y., Zhao Y., Ren Z., Bai J., Wang H. - Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries, J. Alloys Comp. 509 (2011) L216–L220.

Zhu J., Zhu T., Zhou X., Zhang Y., Lou X.W., Chen X., Zhang H., Hng H.H., Yan Q. - Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability, Nanoscale 3 (2011) 1084–1089.

Chen D., W. Wei W., Wang R., Zhu J., L. Guo L. - α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries, New J. Chem. 36 (2012) 1589–1596.

Zou Y., Kan J., Wang Y. - Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage,” J. Phys. Chem. C 115 (2011) 20747–20753.

Xu C., Wang X., Zhu J., Yang X., Lu L. - Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets, J. Mater. Chem. 18 (2008) 5625-5629.

Liu J., Bai H., Wang Y., Liu Z., Zhang X., Sun D.D. - Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications, Adv. Funct. Mater. 20 (2010) 4175-4181.

Khai T.V., Na H.G., Kwak D.S., Kwon Y.J., Ham H., K.B. Shim K.B. and Kim H.W. - Significant enhancement of blue emission and electrical conductivity of N-doped graphene, J. Mater. Chem. 22 (2012) 17992-18003.

Khai T.V., Na H.G., Kwak D.S., Kwon Y. J., Ham H., Shim K.B., H. W. Kim H.W. - Influence of N-doping on the structural and photoluminescence properties of graphene oxide films, Carbon 50 (2012) 3799–3806.

Xu C., Wang X., J.W. Zhu J.W. - Graphene-metal particle nanocomposites, J. Phys. Chem. C 112 (2008) 19841–19845.

L. W. Zhang L.W., H. B. Fu H.B., Zhu Y.F. - Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite‐like carbon, Adv. Funct. Mater. 18 (2008) 2180-2189.

Haldar K.K., Sinha G., Lahtinen J., Patra A. - Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties, ACS Appl. Mater. Interfaces 4 (2012) 6266-6272.

Mitra S., Das S., Mandal K., Chaudhuri S. - Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: Growth mechanism, optical and magnetic properties, Nanotechnology 18 (2007) 275608.

Downloads

Published

2019-10-28