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ABSTRACT 

Genetic Algorithms (GA) was concerned by many authors and researchers from all over the 
world. There were results in different fields of our lives. But the convergence of GA is an open 
problems. In this paper, we propose a method using Markov model to prove the convergence of 
GA. At first, in section 2, we review fundamental concepts in Markov Model, then we present 
important role of Markov model in GA (section 3). After that, in section 4, we show the weak 
convergence of GA base on Markov model. In the end, in section 5, we also illustrate these 
using experiment results. 

Keywords: genetic algorithm, fuzzy theory, fuzzy rules, neural network. 

1. INTRODUCTION 

Learning system based on fuzzy rules with genetic algorithms can lead to effective 
expression of some problems. Fuzzy logic (FL) gives a simple way for defined conclusion from 
input data which is unclear, noisy effected by other sources or lost information. FL model is 
based on users’ experiences rather than based on their technique knowledge about system. In 
fuzzy logic methods, any suitable number of input factors can be processed and we have a huge 
output, though defining a rule base becomes complex if too much inputs and outputs are selected 
for simple execution because rules used for determining their correlation have to be defined. 
This leads to increase in fuzzy rules and complexity but it can increase quantity of control. Many 
methods are proposed to make fuzzy rule base. Basic idea is to research and to make necessary 
optimal rules to control input data without verifying the quantity of control. This paper presents 
a generation of fuzzy rule base by fuzzy clustering technique and use GA for optimizing 
obtained fuzzy rules. 

Firstly, we classify numerical data. The purpose of this step is to get a set of data from a 
large amount of given data and to have a short representation about behavior of our system. 
Several different clustering algorithms have been developed. Fuzzy C-means (FCM)  is one of 
these that have widely used. In fact, begin with a certain number of clusters and a prediction for 
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each center of cluster, this algorithm converge to the solution that can be local minimum point. 
This point is center of cluster in future. 

Each cluster presents definite part of system behavior, represented by a IF-THEN rule. 
Then, each cluster is projected in one dimension of input space. In the input space, each 
projection makes a priority of one rule. The rules are formed [1]: 

 R1: If x1 is A1
1 and x2 is A2

1 then y1 = p0
1+ p1

1 x1 + p2
1 x2 

      ..... 

RK: If x1 is A1
K and x2 is A2

K then yk = p0
K+ p1

K x1 + p2
K x2 

where as two input variables x1 and x2 are process time and priority (or weight) but output 

variable yk (k = 1, 2, …, K) is select index (or sequent index) of the kth-rule. kA1  and kA2  (k = 1, 

2, …, K) are fuzzy sets of kth –rule obtained by projecting clusters to domains of process time 

and priority, correspondingly and k

ip  (i=1,2; k=1, 2, …, K) is result recurrent parameters. 

The next step is to define optimal result parameters by using training data set (x1t, x2t, yt),                    

t = 1, 2, …, m. With this training set, output can be written:  
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In matrix form, system output [2]: [ ] [ ][ ]PXY = , where input matrix, defined in each rule, is: 
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and output matrix is known as: [ ]TmyyY ,...,1=  

Then, P is formed: 

 ( ) CMSYXXXP TT ==      (2) 

where as C= (XTX), M = XT, S = Y. 

2. MARKOV MODEL 

Markov model is defined as the development of system in the future only depends on 
present and not on the past. In [4], we have: C, M, S are random matrix. In which, if M is 
positive matrix and S is column satisfaction then CxMxS  is a positive random matrix. Where: 

- A = (aij) is positive (denote A > 0) if aij >0 ( )nji ,..,1, =∀  

- Matrix is random if ( )nia
n

j

ij ,..,11
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Moreover, assumption that P is reducible random matrix and C is primative random matrix 
size m and R,T are non-zero matrixes. Then: 
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is stable random ma trix with ∞∞ = pP '1  where ∞∞ = Ppp 0  doesn’t depends on original 

distribution and ∞p  satisfies 0>∞

ip , with all { }mi ,...,1∈  and 0=∞
jp , with njm ≤< .  

Markov process: we consider a process …depends on time. At the point t = 0, X can have a 
random state in state space S. Denote X(t) is state of X at the time t. Thus, corresponding to a point 
of time t, X(t) is a random variable describing state of progress. {X(t)}t≥0 is called a random process. 

Assumption that, before the point of time s, random process has some state, at the point of 
time s, it is at state i. We consider the probability for at the point t, (t > s), the process is at state 
j. If this probability only depends on the group of four (s,i,t,j) as (4): 

P[X(t)= j|X(s)=i] = p(s,i,t,j),   ∀s,i,t,j    (4) 

then the process’s development in the future is only depends on the present but does not depend 
on the past (non-remember feature). This is Markov feature. A random process X(t) having 
Markov feature as above is called Markov process. If the state space S consists of a uncountable 
number of states then Markov process X(t) is called a Markov chain. 

We have a finite Markov chain X on state space S = {1,…,T}. If at t = n, X(n) get one of 

these values 1,2,…,T corresponding to the probabilities )()(
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and pij= p(t,i,t+1,j)=P[X(t+1)=j|X(t)=i] ( Nt ∈∀ ) is state transfer probability from state i to 
state j after one step, { }Tji ,..,2,1, ∈∀ , then matrix P = [pij]TxT, is called state transfer 
probability matrix or Markov chain’s state transfer probability matrix. After every one step, the 
process transfers from state i to some state j with probability 0≥ijp , thus we have: 

1
1

=∑
=

T

j

ijp         (6) 

as defination, state transfer probability matrix P is a random. 

3. MARKOV MODEL IN GENETIC ALGORITHM 

3.1. The finite population model 

 The finite population model is an important tool in modeling the process of implementing 
finite population genetic algorithm (GA). For simple genetic algorithms (GAs), the model is 



 
 

Tran Manh Tuan, Le Ba Dung  

 270

presented through out a function called heuristic function G. This forms out a function, M, 
describing the combination (between crossover and mutation) and another function, F  for the 
selection. We have G = Mo  F  is used for identifying the presentation of binary strings. With a 
binary string presentation, M can describe crossover and mutation operators based on the 
crossover and mutation masks, including one point, two point and synchronous crossover. F can 
key out clear and well-proportioned selection. G has three expressions. Firstly, it is a finite 
presentations of a population in the simple GA, such as population size is finite. Secondly, if the 
population in present generation is x, then with every selection an individual for population in 
next generation, probability of individual i∈ Ω added is G(x)i. Third, G(x) is expected 
population of the next generation [3].  

3.2. Random Heuristic Searching model (RHS) 

 This model show the way to transfer a Heuristic function as G in simple GA to a finite 
population model. This model consists of four steps as follow:  

- Step1: Select a initial random population X size r. 

- Step 2: Select r random independent samples from distribution G(X/r) and set as a new 
population Y. 

- Step 3: Replace X by Y. 

- Step 4: Repeat step 2. 

When this model is used for simple GA, G is the function of finite population model shown 
above. The random algorithms such as simulation training and genetic programming can be 
modeled by using a suitable function G. 

RSH model supposes that a GA follows the generations and each individual of next 
generation is independently selected with present population. Many GAs used commonly, stable 
state algorithm is an example, are not suitable with this instance. The simple GA is modeled as a 

Markov chain [2]. The states of Markov chain are populations. There are 1n r
N

r

+ − 
=  
 

 such 

populations. Transfer probability of Markov chain can be obtained by using polynomial 
probability distribution. If X and Y corresponding are populations size r, then transfer 
probability from X to Y is shown as: 

  
Above formula can be understood as sample space is a set of ordered strength r strings in 

Ω . A population can be considered as a equivalent class of ordered string, where two strings are 
equivalent if one can be rearranged to become another. Probability of any string corresponding 

with population Y is . The number of these strings is   

 We hope a general version of RSH formula using to compute probability of selection a 
population Y size k from a population X size r by heuristic H. Thus, we define function R as 
follow: 
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4. WEAK CONVERGENCE IN GENETIC ALGORITHM AND ANALYSIS PROCESS 
BASED ON MARKOV CHAIN 

When applying GA for solving complex and large scale real world problems, one of the 
difficulties is convergence. Weak convergence happens when population in GA get optimal 
state, that means most of genetic operators can not generate a child populations which more 
perfect than their parents. Some methods has been proposed to carry out this difficulty including 
selection procedure restriction method, change the fitness rate…. However, these methods are 
heuristic. Their effects changes in different problem and their application trends need to be 
justified for each suitable particular instance. 

A trouble in researching about weak convergence is to identify when it happens and describe 
its range. For example, Srinivas and Patnaik [8] used the difference between average fitness 
value and maximum one for measure weak convergence, although not measure density of 
algorithm and change crossover and mutation probabilities reasonably following the 
measurement. On the other hand, population diversity in quantitative definition is used in many 
papers for studying this. It easy to recognize that, decreasing population diversity straightly leads 
to weak convergence. However, there are some efforts in quantitative analysis process about 
population diversity to use it as a tool preventing weak convergence. 

Population diversity rate and its Markov analyzing 

In this section, concept “population diversity rate” is proposed and defined as a way 
following correctly to the concepts of population diversity that not characterized strictly in 
semantic meaning. Then, we use concept definition for studying the problem about weak 
convergence of GA by using Markov chain combination with simple GA operators.  

 Considering GAs with binary presentations length l and a fixed size N, we have following 
definitions: 

Definition 4.1. Let 1 2( , ,..., ) n

nX X X X S= ∈
r

 is a population. Population diversity X
r

, denoted 

by ( )Xλ
r

, is defined as a number of elements in vector 
1

n

i

i

X
=

∑  that their values not equal to 0 or 

N. Thus, we have ( ) ( )X l Xβ λ= −
r r

. 

 If denoting X
r

 in matrix form, then ( )Xλ
r

 is number of columns in X
r

 that their elements 

of column get both 0 and 1 values. Specially, all of individuals in X
r

 are completely defined 

with every ( )Xλ
r

 = 0. Otherwise, ( )Xβ
r

 is only number of columns consisted of all elements 

that equal 0 or 1 of X
r

. 

A schema L([1]) is a hyperspace in individual space S and can be presented as follow: 

 
where K (1 K l≤ ≤ ) is order of L, {i1, …,iK} is values of identified elements. A schema order K 
includes 2l-K different individuals. 

Definition 4.2. Let 1 2( , ,..., ) n

nX X X X S= ∈
r

 is a population with population diversity rate 

( )Xλ
r

 and mature rate ( ) ( )X l Xβ λ= −
r r

. Let ik,  1 ( )k Xβ≤ ≤
r

is components that all 
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individuals of X
r

 get the same value. Then, we have {0,1}
ki

a ∈ , 1 ( )k Xβ≤ ≤
r

. We call 

schema 
1 ( )

( ,..., )
X

i iL a a
β

r  is minimum schema containing X
r

 and denote it by 
1 ( )

( ,..., ; )
X

i iL a a X
β

r

r
 

or ( )L X
r

 for simple (if there is not confusion). 

 To determine the effect of population diversity, we assume that mutation probability equals 
0. 

Theorem 4.1. Let { ( ), 0}X k k ≥
r

 is a population Markov chain with pm = 0 and 0(0)X X=
r r

. 

a, For every Y 
1 ( )0

0( ,..., ; )
X

i iL a a X
β

∈
r

r
, exist a mumber n  ≥ 0 so that  

0{ ( ) / (0) }P Y X n X X∈ =
r r r

> 0 

b, For every Y 
1 ( )0

0( ,..., ; )
X

i iL a a X
β

∉
r

r
 and every n  ≥ 0 we have 

 0{ ( ) / (0) }P Y X n X X∈ =
r r r

= 0 

Lemma 4.1. Let { ( ), 0}X k k ≥
r

 is a population Markov chain of the Canonical GA with pm=0 

and B is a set of homogeneous populations, for example B = {(X, X, …, X); X∈S}. Then, for 
every n ≥ 1, we have  

 

Theorem 4.2. Let { ( ), 0}X k k ≥
r

 is a population Markov chain of a GA with pm = 0 and B is a 
set of homogeneous populations. 

a, { ( ), 0}X k k ≥
r

 converges to B with probability 1, it means: 

 
b, Diversity of a series of populations is uniform decreasing with probability 1, strictly 
decreasing with positive probability and converges to zero with probability 1, these mean: 

 

 

 

Definition 4.3. Given a population 1 2( , ,..., )NX X X X=
r

, where Xi  = (xi1, …, xil), i =1,…,N, 

for every interger m, 1 m l≤ ≤ , set 0
m

I và 1
m

I is index sets of all individuals in population X
r

, 

corresponding get 0 or 1 at mth gene position, it means: 

 

 
and write 
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We call:  

 
corresponding are fitness rate 0 and 1 of the individuals at mth gene position. 

With the results shown in [9], we can see that weak convergence probability at a gene 
position is independent with crossover probability. Thus, said that crossover probability 
justifying method  prevents weak convergence  has not theory basis. Crossover probability 
justifying can promote the searching rate of minimum schema containing present population. 

5. EXPERIMENT RESULTS 

Global optimal solution for mathematic model. 

Mathematic model (7) is used to find global optimal point as the method presented above. 
As we known, on mathematic form, there are many ways to find the globe optimal solution of 
(7). Here, using fuzzy genetic algorithm to find the global optimal model or optimal point is 
meaningful. Looking for the optimal solution is constructed by using fuzzy model (on other 
words, knowledge model). It’s suitable for complex problems, less-information problems and 
hard to construct a mathematic model satisfying the given requirement. In this example, we have 
many optimal points. However, we find the global optimal rapidly by using fuzzy genetic 
algorithm. 
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For searching global optimal for (7), we apply Fuzzy GA by above steps. Fuzzy model 
constructing process of (7) is taken part by choosing member function in Figure 1. After that, 
modifying process is carried out to get the best result in with (x = 0.127 ; f  = 19.89) and 
member function is presented in figure 2. 

 

 

Figure 1. Form of member function after searching optimal solution by GA 
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Figure 2. The global optimal solution using fuzzy GA. 

x = 0.127, f = 19.89 

Searching optimal model for nonlinear kinematic system. 

Assumption that, we have a nonlinear kinematic system presented by this equation: 

)())2(),1(()( kukykyhky +−−=                                   (8) 

where as 

)2()1(1

)5.0)1()(2()1(
))2(),1((

22 −−+

−−−−
=−−

kyky

kykyky
kykyh                    (9) 

 

Figure 3. Inputs )(ku , )(kg  of evolution process. 

 

 

 Figure 4. Output )(ky of evolution process 

Our purpose is to approximate nonlinear element ))2(),1(( −− kykyg of this process by 
using evolution model with fuzzy logic in 400 training data points obtained from evolution 
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model. Begin from balance state (0,0), two hundred samples of identifying data are defined with 
input signal )(ku , chosen randomly, has steady distribution in (-1.5, 1.5). In period from 200 to 

500, )(ku is formed )25/2sin()( kku π= . Then we have output in figure 3. The result is presented 
in figure 4. 

When comparing results obtained by three different approaches, we sumary it by the 
convergence (MSE) of GA applied for TSK model [4, 5] with linear constant: training data (bold 
line), testing data (dash line) in figure 4.  

In general, experiment result shows that crossover probability Pc chosen approximately 0.6 
and mutation probability Pm is small. If mutation happens too often, evolution process will be a 
random process. Otherwise, if mutation probability is too small, searching process will be a local 
searching. Hence, we have to choose mutation probability from 0.01 to 0.05.  

TSK fuzzy rule system for model constructing and form of fuzzy set.  

1R       If 1−ky  small  and 2−ky  small then 143.0166.0452.0 21 ++= −− kk yyg  

2R       If 1−ky  small and 2−ky  large then  097.0157.0419.0 21 −+−= −− kk yyg  

3R       If 1−ky  large and 2−ky  small then 137.0090.0269.0 21 ++−= −− kk yyg  

4R       If 1−ky  large and 2−ky  large then 176.0054.0323.0 21 ++= −− kk yyg  

The parameters of fuzzy terms are as following: 

1−ky  small = ( 272.1,445.1,789.4 −−  ) ;  large  )789.4,975.0,608.0(−=  

2−ky  small )660.0,628.0,175.3( −−= ;  large  )712.2,989.0,792.0(−=  

For example: Consider to one population (n = 1) including 2 bit strings (l = 2), the state 
space has 4 states: 00, 01, 10, 11 then C, M and S are 4 x 4 size matrices as below: 

 

Figure 5. The matrices of the crossover (a), mutation (b), selection (c) and the result matrix (d). 
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6. CONCLUSION 

This paper presented a technique for proving the convergence of GA combination with 
fuzzy theory. Data obtained from knowledge in the real world, is used for fuzzy clustering to get 
fuzzy rules. After that, using GA to optimize these rules. When the sample set is large, the 
number of rules is based on the mumber number of clustering centers . From this result, we 
propose a effective method to prove the convergence of a important algorithm in GA by using 
fuzzy clustering and GA. 
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Giải thuật di truyền (GA) đã được nhiều tác giả và các nhà nghiên cứu trên toàn thế giới 
quan tâm đến. Đã có các kết quả trong những lĩnh vực khác nhau của đời sống. Nhưng sự hội tụ 
của GA vẫn còn là một vấn đề ngỏ. Trong bài báo này, chúng tôi đề xuất một phương pháp dùng 
mô hình Markov để chứng minh sự hội tụ của GA. Trước hết, ở mục 2, chúng tôi nhắc lại các 
khái niệm cơ bản trong mô hình Markov. Sau đó, trong mục 3, chúng tôi trình bày vai trò quan 
trọng của mô hình Markov trong GA. Tiếp theo, trong mục 4,  chúng tôi chỉ ra sự hội tụ yếu của 
GA dựa trên mô hình Markov. Cuối cùng, trong mục 5, chúng tôi minh họa các lí thuyết trên 
bằng các kết quả thực nghiệm. 

Từ khóa: giải thuật di truyền, lí thuyết mờ, các luật mờ, mạng nơron. 

 


