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ABSTRACT

Genetic Algorithms (GA) was concerned by many authors and researchers from all over the
world. There were results in different fields of our lives. But the convergence of GA is an open
problems. In this paper, we propose a method using Markov model to prove the convergence of
GA. At first, in section 2, we review fundamental concepts in Markov Model, then we present
important role of Markov model in GA (section 3). After that, in section 4, we show the weak
convergence of GA base on Markov model. In the end, in section 5, we also illustrate these
using experiment results.

Keywords: genetic algorithm, fuzzy theory, fuzzy rules, neural network.

1. INTRODUCTION

Learning system based on fuzzy rules with genetic algorithms can lead to effective
expression of some problems. Fuzzy logic (FL) gives a simple way for defined conclusion from
input data which is unclear, noisy effected by other sources or lost information. FL. model is
based on users’ experiences rather than based on their technique knowledge about system. In
fuzzy logic methods, any suitable number of input factors can be processed and we have a huge
output, though defining a rule base becomes complex if too much inputs and outputs are selected
for simple execution because rules used for determining their correlation have to be defined.
This leads to increase in fuzzy rules and complexity but it can increase quantity of control. Many
methods are proposed to make fuzzy rule base. Basic idea is to research and to make necessary
optimal rules to control input data without verifying the quantity of control. This paper presents
a generation of fuzzy rule base by fuzzy clustering technique and use GA for optimizing
obtained fuzzy rules.

Firstly, we classify numerical data. The purpose of this step is to get a set of data from a
large amount of given data and to have a short representation about behavior of our system.
Several different clustering algorithms have been developed. Fuzzy C-means (FCM) is one of
these that have widely used. In fact, begin with a certain number of clusters and a prediction for
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each center of cluster, this algorithm converge to the solution that can be local minimum point.
This point is center of cluster in future.

Each cluster presents definite part of system behavior, represented by a IF-THEN rule.
Then, each cluster is projected in one dimension of input space. In the input space, each
projection makes a priority of one rule. The rules are formed [1]:

R;: If x;is A;" and x2 is A,' then y; = po’'+ pi' x1 + p2' x2

Ri: If x; is A/Xand x2 is A;" then yx = po*+ p/“ x; + pX x2
where as two input variables x; and x; are process time and priority (or weight) but output
variable yx (k = [, 2, ..., K) is select index (or sequent index) of the k™-rule. Alk and A; k=1,
2, ..., K) are fuzzy sets of k" —rule obtained by projecting clusters to domains of process time

and priority, correspondingly and pl.k (i=1,2; k=1, 2, ..., K) is result recurrent parameters.

The next step is to define optimal result parameters by using training data set (x;, x2, i),
t=1, 2, ..., m. With this training set, output can be written:

ZK A K
= tJt
yl‘: kKl' k :zkzllgtkyl‘k (1)

2™
in which: w' = (Af (xlr)/\ Af(x,, ) va B =w! /Z:li1 wk
In matrix form, system output [2]: [Y ] = [X ][P ], where input matrix, defined in each rule, is:
Bl B Bl e BE X, B B X,
X=]..
Boveos B s B B X B Xasyoeos By X
and output matrix is known as: Y = [yl,..., ym]T
Then, P is formed:
P=(X"X)X"Y =cMs )
where as C= (X'X), M =X", S =Y.

2. MARKOV MODEL

Markov model is defined as the development of system in the future only depends on
present and not on the past. In [4], we have: C, M, S are random matrix. In which, if M is
positive matrix and S is column satisfaction then CxMxS is a positive random matrix. Where:

- A = (ay) is positive (denote A > 0) if a; >0 (Vi, j=1,..,n)

- Matrix is random if Zn: a; = 1 (‘v’i =1,.., n)

j=1
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Moreover, assumption that P is reducible random matrix and C is primative random matrix
size m and R,T are non-zero matrixes. Then:

Cc* 0 o~ 0

P” =lim P* =lim| k==t . 1= 3)
ke kol 3 T'RCH T R 0

i=0

oo

is stable random ma trix with P~ =1'p~ where p~ = p°’P” doesn’t depends on original

distribution and p~ satisfies p;” >0, withall i€ {1,...,m} and p; =0,withm< j<n.

Markov process: we consider a process ...depends on time. At the point + = 0, X can have a
random state in state space S. Denote X(?) is state of X at the time . Thus, corresponding to a point
of time ¢, X(z) is a random variable describing state of progress. {X(1)}0 is called a random process.

Assumption that, before the point of time s, random process has some state, at the point of
time s, it is at state i. We consider the probability for at the point ¢, (¢ > s), the process is at state
Jj. If this probability only depends on the group of four (s,i,t,j) as (4):

P[X(t)=jIX(s)=i] = p(s,i,t,j), V5itj 4

then the process’s development in the future is only depends on the present but does not depend
on the past (non-remember feature). This is Markov feature. A random process X(t) having
Markov feature as above is called Markov process. If the state space S consists of a uncountable
number of states then Markov process X(t) is called a Markov chain.

We have a finite Markov chain X on state space S = {/,...,T}. If at t = n, X(n) get one of
these  values 1,2,...,T corresponding to the probabilities 71'1("),71'5"),...,7[}")

(2" + 7" + ...+ 7" =1) then vector (7", 7",...,7.") is called probabilities distribution

vector at the time ¢ = n. At t+ = 0, we have generation probabilities distribution vector

0 0 0 0
n” =@x", 7,7\,

o =@z, z",... 7" ®)

and pij= p(t,i,t+1,j)=P[X(t+1)=j1X(t)=i] (Vt€ N ) is state transfer probability from state i to
state j after one step, Vi, je {1,2,..,T}, then matrix P = [pj]mer, is called state transfer
probability matrix or Markov chain’s state transfer probability matrix. After every one step, the
process transfers from state 1 to some state j with probability p, = 0, thus we have:

T
2Py =1 (©)
j=1
as defination, state transfer probability matrix P is a random.

3. MARKOV MODEL IN GENETIC ALGORITHM
3.1. The finite population model

The finite population model is an important tool in modeling the process of implementing
finite population genetic algorithm (GA). For simple genetic algorithms (GAs), the model is
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presented through out a function called heuristic function G. This forms out a function, M,
describing the combination (between crossover and mutation) and another function, F for the
selection. We have G = Mo F is used for identifying the presentation of binary strings. With a
binary string presentation, M can describe crossover and mutation operators based on the
crossover and mutation masks, including one point, two point and synchronous crossover. F can
key out clear and well-proportioned selection. G has three expressions. Firstly, it is a finite
presentations of a population in the simple GA, such as population size is finite. Secondly, if the
population in present generation is X, then with every selection an individual for population in
next generation, probability of individual i€ Qadded is G(x). Third, G(x) is expected
population of the next generation [3].

3.2. Random Heuristic Searching model (RHS)

This model show the way to transfer a Heuristic function as G in simple GA to a finite
population model. This model consists of four steps as follow:

- Stepl: Select a initial random population X size r.

- Step 2: Select r random independent samples from distribution G(X/r) and set as a new
population Y.

- Step 3: Replace X by Y.
- Step 4: Repeat step 2.

When this model is used for simple GA, G is the function of finite population model shown
above. The random algorithms such as simulation training and genetic programming can be
modeled by using a suitable function G.

RSH model supposes that a GA follows the generations and each individual of next
generation is independently selected with present population. Many GAs used commonly, stable
state algorithm is an example, are not suitable with this instance. The simple GA is modeled as a

Markov chain [2]. The states of Markov chain are populations. There are p z(”Jrr_lj such
r

populations. Transfer probability of Markov chain can be obtained by using polynomial
probability distribution. If X and Y corresponding are populations size r, then transfer
probability from X to Y is shown as:

G(X/r);’
(¥3)!
Above formula can be understood as sample space is a set of ordered strength r strings in

Q). A population can be considered as a equivalent class of ordered string, where two strings are
equivalent if one can be rearranged to become another. Probability of any string corresponding

v o Yi . Lol |
with population Y is [TG(X/T);" The number of these strings is rl/ 1Y

We hope a general version of RSH formula using to compute probability of selection a
population Y size k from a population X size r by heuristic H. Thus, we define function R as
follow:

Ppx.v)=r]

JEQ

H(X /r)]’

RO X,YV) =k [ =5
;

JEQ
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4. WEAK CONVERGENCE IN GENETIC ALGORITHM AND ANALYSIS PROCESS
BASED ON MARKOYV CHAIN

When applying GA for solving complex and large scale real world problems, one of the
difficulties is convergence. Weak convergence happens when population in GA get optimal
state, that means most of genetic operators can not generate a child populations which more
perfect than their parents. Some methods has been proposed to carry out this difficulty including
selection procedure restriction method, change the fitness rate.... However, these methods are
heuristic. Their effects changes in different problem and their application trends need to be
justified for each suitable particular instance.

A trouble in researching about weak convergence is to identify when it happens and describe
its range. For example, Srinivas and Patnaik [8] used the difference between average fitness
value and maximum one for measure weak convergence, although not measure density of
algorithm and change crossover and mutation probabilities reasonably following the
measurement. On the other hand, population diversity in quantitative definition is used in many
papers for studying this. It easy to recognize that, decreasing population diversity straightly leads
to weak convergence. However, there are some efforts in quantitative analysis process about
population diversity to use it as a tool preventing weak convergence.

Population diversity rate and its Markov analyzing

In this section, concept “population diversity rate” is proposed and defined as a way
following correctly to the concepts of population diversity that not characterized strictly in
semantic meaning. Then, we use concept definition for studying the problem about weak
convergence of GA by using Markov chain combination with simple GA operators.

Considering GAs with binary presentations length / and a fixed size N, we have following
definitions:
Definition 4.1. Let X = (X,,X,,...X,)e S" is a population. Population diversity X , denoted

by /1()2 ), is defined as a number of elements in vector i X, that their values not equal to O or

i=l1

N. Thus, we have B(X)=1-A(X).

If denoting X in matrix form, then /1()? ) is number of columns in X that their elements
of column get both 0 and 1 values. Specially, all of individuals in X are completely defined
with every /1()? ) = 0. Otherwise, ,3()? ) is only number of columns consisted of all elements
that equal O or 1 of X.

A schema L([1]) is a hyperspace in individual space S and can be presented as follow:
L={X=(z,--,z) €Sz, =a,, 1<y <L1<k<K},

where K (1< K <) is order of L, {ii, ...,ix} is values of identified elements. A schema order K
includes 2 different individuals.

Definition 4.2. Let X = (X,,X,,....,X,)e S" is a population with population diversity rate
A(X) and mature rate S(X)=I-A(X). Let i, 1<k<pB(X)is components that all
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individuals of X get the same value. Then, we have g, € {0,1}, 1<k < ,B(X ). We call

schema L(ail yeensl ) is minimum schema containing X and denote it by L(al sl ‘X )
(X)

or L()? ) for simple (if there is not confusion).

To determine the effect of population diversity, we assume that mutation probability equals
0.

Theorem 4.1. Let {)? (k),k =0} is a population Markov chain with pn = 0 and X 0)= X 0

a, Forevery Y € L(ai] ,o.n@; 3 X)), existamumber n >0 so that
5%y

P{Ye X(n)/X(0)=X,}>0

b, Forevery Y ¢ L(ai] 3 ;)?0) and every n > 0 we have

B(Xy)
P{Ye X(n)/X(0)=X,}=0

Lemma 4.1. Let {)? (k),k =0} is a population Markov chain of the Canonical GA with p,=0

and B is a set of homogeneous populations, for example B = {(X, X, ..., X); XeS}. Then, for
every n = 1, we have

PiX (n) B/ X (0) € B} = 1.

Theorem 4.2. Let {X (k),k >0} is a population Markov chain of a GA with pn =0 and B is a
set of homogeneous populations.

a, {)? (k),k =0} converges to B with probability 1, it means:
P{lim X (k) e B} =1.
k—oo
b, Diversity of a series of populations is uniform decreasing with probability 1, strictly
decreasing with positive probability and converges to zero with probability 1, these mean:
PIMX (E+ 1) <MX ()} =1, k20
PIMN (k+ 1) <MX (£) >0, k>0
. ARV o
P{!}EEIA(A (k))y=0} =1
Definition 4.3. Given a population X = (X,,X,,...Xy), where Xi = (xi, ..., Xu), i =I,...,N,

—

for every interger m, 1<m <1/, set I;'va I"is index sets of all individuals in population X ,
corresponding get 0 or 1 at m™ gene position, it means:

["={ie{l,2 - N}z, =0}
" ={ief{l,2 - N}z, =1}

and write

P = S AN, ) = S f(X).

el ic I
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We call:
__ ) _
EJ\:l f(‘xr_.") 1 EJ\:l f( ‘YJ) 1

corresponding are fitness rate 0 and 1 of the individuals at m™ gene position.

bm =1- (L)

Ay

With the results shown in [9], we can see that weak convergence probability at a gene
position is independent with crossover probability. Thus, said that crossover probability
justifying method prevents weak convergence has not theory basis. Crossover probability
justifying can promote the searching rate of minimum schema containing present population.

5. EXPERIMENT RESULTS
Global optimal solution for mathematic model.

Mathematic model (7) is used to find global optimal point as the method presented above.
As we known, on mathematic form, there are many ways to find the globe optimal solution of
(7). Here, using fuzzy genetic algorithm to find the global optimal model or optimal point is
meaningful. Looking for the optimal solution is constructed by using fuzzy model (on other
words, knowledge model). It’s suitable for complex problems, less-information problems and
hard to construct a mathematic model satisfying the given requirement. In this example, we have
many optimal points. However, we find the global optimal rapidly by using fuzzy genetic
algorithm.

1 (1
e 10{{@—0.16)2 +0.1}} Sm[}j -

For searching global optimal for (7), we apply Fuzzy GA by above steps. Fuzzy model
constructing process of (7) is taken part by choosing member function in Figure 1. After that,
modifying process is carried out to get the best result in with (x = 0.127 ; f = 19.89) and
member function is presented in figure 2.

<) [Membership Function Editor: anfis
File  Edit  Wiew

FIS Wariables Membership function plats

mm intmr2 intmrs imimta in1mrs
@ !
input1 output
05| g
@ T i T T T
005 0 015 02 025
input varisiale "input1”
Cument Variable Cuent Membership Function iclick on MF to select]
Name input] (i
u
Tope inpLt e
Farams ‘
Range [0.001 0.239]
Display Range: [0.001 0.239] | Help Clase |
Fiaady |

Figure 1. Form of member function after searching optimal solution by GA
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Figure 2. The global optimal solution using fuzzy GA.
x=0.127,f=19.89

Searching optimal model for nonlinear kinematic system.

Assumption that, we have a nonlinear kinematic system presented by this equation:
y(k) = h(y(k =1, y(k —2)) +u(k) ®)

where as

yk =D y(k=2)(y(k -1)-0.5)

h(y(k =1), y(k =2)) = ©)

1+ y*(k=1Dy*(k=2)

150 200 300 350 i1e]

1O
T

150 200 200 250 iTs}

1O

jNels) 150 jeta el 200 250
ko

Figure 3. Inputs u(k), g(k) of evolution process.

=i

Figure 4. Output y(k) of evolution process

Our purpose is to approximate nonlinear element g(y(k—1), y(k—2))of this process by
using evolution model with fuzzy logic in 400 training data points obtained from evolution
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model. Begin from balance state (0,0), two hundred samples of identifying data are defined with
input signal u(k), chosen randomly, has steady distribution in (-1.5, 1.5). In period from 200 to

500, u(k)is formed u(k) =sin(27/25) - Then we have output in figure 3. The result is presented

in figure 4.

When comparing results obtained by three different approaches, we sumary it by the
convergence (MSE) of GA applied for TSK model [4, 5] with linear constant: training data (bold

line), testing data (dash line) in figure 4.

In general, experiment result shows that crossover probability P. chosen approximately 0.6
and mutation probability P, is small. If mutation happens too often, evolution process will be a
random process. Otherwise, if mutation probability is too small, searching process will be a local
searching. Hence, we have to choose mutation probability from 0.01 to 0.05.

TSK fuzzy rule system for model constructing and form of fuzzy set.

R, If y,, small and y,_, small then ¢ =0.452y,  +0.166y, , +0.143

R, If y,_, smalland y,_, large then

R, If y,_, large and y,_, small then g =—0.269y, , +0.090y, ,+0.137

R, If y,, largeand y, , large then g=0.323y,_, +0.054y,_, +0.176
The parameters of fuzzy terms are as following:

v, small = (-4.789,-1.445,1.272 ) ; large =(-0.608, 0.975, 4.789)
Vi, small =(-3.175,-0.628, 0.660) ; large =(-0.792,0.989,2.712)

For example: Consider to one population (n = 1) including 2 bit strings (1 = 2), the state
space has 4 states: 00, 01, 10, 11 then C, M and S are 4 x 4 size matrices as below:

0.028

0.173

0.221

L0014

Figure 5. The matrices of the crossover (a), mutation (b), selection (c) and the result matrix (d).

0.236

0.020

0.215

0.203

0.028

0.306

0.282

0.346

0922
0.038
0.002

0.038

0.099
0.100
0.142

0.123

0419y, , +0.157y, , —0.097

0.038

0.922

0.038

0.002

0.135

0.142

0.135
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6. CONCLUSION

This paper presented a technique for proving the convergence of GA combination with

fuzzy theory. Data obtained from knowledge in the real world, is used for fuzzy clustering to get
fuzzy rules. After that, using GA to optimize these rules. When the sample set is large, the
number of rules is based on the mumber number of clustering centers . From this result, we
propose a effective method to prove the convergence of a important algorithm in GA by using
fuzzy clustering and GA.
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TOM TAT

MO HINH MARKOV TRONG CHUNG MINH SU HOI TU
CUA GIAI THUAT DI TRUYEN MO

Tran Manh Tuin', L& B4 Diing?

"Trwong Pai hoc Cong ngh¢ thong tin va Truyén thong, Pai hoc Thdi Nguyén,
Xa Quyét Thang, Thanh pho Thdi Nguyén

2Vién Cong nghé thong tin, Vien HLKHCNVN, 18 Hoang Quéc Viét, Cau Gidy, Ha Néi

“Email: tuan.cntt.dhtn @ gmail.com

Giai thuat di truyén (GA) da duoc nhiéu tdc gia va cdc nha nghién clru trén toan thé gioi
quan tam den ba c6 cac ket qua trong nhing linh vyc khac nhau cta doi song. Nhung sy hoi tu
ctia GA van con 1a mot van dé ngo. Trong bai bdo nay, ching toi dé xuat mot phuong phép dung
mb hinh Markov dé chimg minh sy hdi tu ciia GA. Trudce hét, & myc 2, chiing t6i nhéc lai cic
khdi ni¢m co ban trong md hinh Markov. Sau d6, trong muc 3, ching t6i trinh bay vai trd quan
trong ctia md hinh Markov trong GA. Tiép theo, trong muyc 4, chiing tdi chi ra sy hoi tu yeu cua
GA dya trén md hinh Markov. Cudi ciing, trong muc 5, chiing t6i minh hoa cdc Ii thuyét trén
bang cdc két qua thyc nghiém.

Tir khéa: giai thuét di truyén, 1 thuyét mo, cdc ludt mo, mang noron.
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