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ABSTRACT  

In this paper, the problem of analysis and design of large-scale multiple beamforming 
system is considered by system theory approach. We consider the response of system parameters 
by set of objective functions in a critical condition, which is unable to access measurement data 
or the data size is large. The reduced-order model is built and the robust solution is found for a 
multiple beamforming system. The Monte Carlo simulation results show that the proposed 
multiple beamforming system yields significant performance against over existing methods. 

Keywords: LS-MIMO-MC-CDMA, 5G, Multiple-beamforming, Min-max. 

1. INTRODUCTION 

Large-scale multiple beamforming systems and massive multiple input multiple output 
(MIMO) systems play important role in the problem of transmitted signal optimization, 
increasing efficiency while transmitting, optimal restoring signal at the receiver, the ability to 
transmit high speed data in multi-path environments (for example, in indoor environments) for 
telecommunications applications [1]; reducing interference in the global positioning applications 
[2]; target localization in sonar and radar [3]; optimizing the transmission of terrestrial Digital 
Video Broadcasting (multicast beamforming) [4]; etc. 

The beamforming system consists of an array processor and array of sensors. It is basically 
a spatial filter which is used to guide the optimal radiation or absorb energy in the direction of 
arrival of the signal. The criteria used to optimize beamforming systems include maximal output 
signal-to-interference-plus-noise ratio (MSINR), minimal mean-square errors (MMSE) and 
minimal least-square errors (MLSE) [5]. 

The complexity caused by the mutual relationship between the signal processing stages of a 
multiple beamforming system increases with the number of antennas; especially when the 
system is working in a complex environment with pertubation and it has to compromise between 
the performance of the system and quality of service (QoS) [6]. And, the multiple beamforming 
system optimization by criteria, segmented by stages, often do not lead to global optimization 
results as expected; especially in critical condition, which is unable to access measurement data 
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or the data size is large [7, 8]. Therefore, it is necessary to develop a theoretical general model to 
design multiple beamforming systems on the basis of combined optimal processes to integrate 
the separate processes through multi-objective optimization. 

On the basis of system theory and identification of dynamical systems we might consider 
the impact of the parameters in the system model on the objective functions under the 
perturbation and contraints of measurement data conditions [9, 10]. But this process is a strong 
nonlinearity, complex in terms of real time calculation, especially in cases when the calibration 
is required or requires high accuracy in working domain [9, 10]. However, for the challenges of 
real time due to the complex nonlinearity, linearization of model system, treatment processes 
(essentially model order reduction), applying robust theory to reduce the order of the model is 
widely recognized as the ultimate method [11, 12]. 

In this paper, two-stage analysis and design of multiple beamforming systems is 
approached by system theory. In the first stage, a reduced order model is built. In the next stage, 
optimal robustness is defined and solved by robust theory. This stage includes two tasks. The 
first task is to apply system theory to dynamical system such as Bounded Input-Bounded Output 
(BIBO) or conditions for controllability, stabilisability and observability of linear dynamical 
system [13, 14] to define set of necessary conditions of robust problem when the system is not 
affected by perturbation. Secondly, under perturbation, dynamical model (parameters, order and 
model characteristics) changes, sufficient condition is defined in order to preserve model 
characteristics as not being perturbed. Obviously, robust problem here determines the existence 
and the uniqueness of the solution (sufficient condition defines the limit of the solution domain). 
The problem is built on the basis of applying systems theory to model-order reduction. 

Applied to the case of multiple beamforming system based on min-max criterion, a system 
model is proposed on the basis of model order reduction and the necessary, sufficient conditions 
shall be determined accordingly. Note that with a dynamical system model, there exists many 
different optimal reduced-order models due to different principles and criteria for model order 
reduction, leading to the existence of multiple sets of necessary, sufficient conditions. But, for 
the reduced-order models which are obtained by using the same principle, we could move from 
model to model, including the set conditions (necessary and sufficient) because in this case we 
use the same principle and reduced-order models comply parsimony principle. Moreover, if we 
use the same optimal principle, there always exists optimal projection between models [15]. In 
this paper, the reduced-order model obtained by applying state-optimal projection on the basis of 
an assumption model with nominal values and an optimum projection in min-max criterion 
multiple beamforming system. The condition  set which needs to be determined  provided that 
static users correspond with the cases where the system is not affected by diffraction is the set of 
limits to the nominal value of the decay model in the pre-selected model in the case the 
parameters unchanged.. The set of  sufficient conditions include inequality that is determined 
with assuming that the users are moving according to the case that the system is perturbed, the 
multiple beamforming system works as in nominal mode. Obviously, the nature of a dynamical 
system theory (controllability, stabilisability and observability) is found in the implementation of 
optimization process. 

The simulation results prove two problems. First, the proposed model is the same as 
theorical solution. Second, the proposed model yields significant performance against over 
existing methods.  

The rest of the paper is organized as follows. In section II, the necessary background is 
given about beamforming methods. Section III presents the proposed min-max criterion multiple 
beamforming system. Section IV provides simulation results and characteristics of the proposed 
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system. Finally, the conclusions of this paper are for concluding remarks, and suggestions for 
further researches. 

2. PRELIMINARIES 

2.1. Signal model 

Consider a beamforming system with M elements. Denote s(t) is transmitted signal, the 
direction of arrival (DOA) angle of the wavefront plane associated with s(t) is �, vector of array 
observation from M elements at time instant t is expressed as : ���� � ���, 	�
��� � ���� � 
���    (1a) 

State equation ����� � ����� � ���� � 
���                                         (1b) 
  

where ���,	�	is steering vector, i(t) is the interference and n(t) is a Gaussian noise vector. 

���,	� � �1		����������/������������/�…		����� !��������/�"#       (2) 

with: d is the distance between the two elements, 	 is the carrier frequency and c is the speed of 
light. Steering vector depends on the direction of arrival and the frequency. For simplicity, we 
denote ���, 	� is a. The single beamforming model is expressed as ���� � �
��� � ���� � 
���. 

The multiple beamforming model is expressed as: ���� � �
��� � ���� � 
���     (3a) 

 ����� � ����� � ���� � 
���        (3b) 

where � � $���!, 	!�, ����, 	��,…���% , 	%�& according to P signal sources. 

There are two general beamforming systems, including narrow band beamforming and 
broad band beamforming. In narrow band beamforming model, the output signal of beamformer 
at time instant t is '��� obtained by linear combination of signals of M elements as: '��� � ∑ )�∗��+! ,����     (4) 

For broad band model, the output signal is expressed as: '��� � ∑ ∑ )�,-∗. !-+/��+! ,��� 0 1�            (5) 

with 2 0 1 is number of delay stages at each channel of ith element of the array. The output 
signal is expressed as: '��� � 3#����      (6) 

where �	is the received signal vector. Vector 4	of length M represents the weights as:  4# � $)/∗, )!∗, … , ). !∗ & � $45&∗     (7) 

The response of single beamformer is expressed as: 6��, 	� � 478      (8) 

The beampattern is defined as squared magnitude of 6��, 	�. Note that each of weight in 
vector w impacts to the response of beamformer in terms of time and space. 

Output power or variance of estimated signal is determined as: 9:|'|�< � 4#9:�	�#<4        (9) 
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where 9:. < denotes mean. 

If the signal is wide sense stationary, the covariance matrix >? � 9:�	�#<	is statistically 
independent over time. Although signal is not often stationary, but we design and evaluate the 
performance of optimized beamforming based on the hypothesis that the signal is wide sense 
stationary. 

The covariance matrix of the narrow band signal s(t) at frequency 	/ is: @? � A�����,	/��7��, 	/� � A����7           (10) 

Where A�� is the average signal power. 

2.2. Statistically optimal beamforming techniques 

Beamforming is an important technique in array processing in order to optimize desired 
signal while minimizing interferences. Statistically optimal beamforming techniques include 
maximization of signal-to-noice ratio (SNR), Minimum Mean Squared Error (MMSE), Linearly 
Constrained Minimum Variance (LCMV) and minimum variance distortionless response 
(MVDR) are widely applied [5,8]. Design of the beamformer under statistically optimal method 
requires statistical properties of the source and the statistical characteristics of the channel. 

2.2.1. Maximization of SNR 

The weight vector is solution of maximization of SNR problem:  

4BCDEFG � argmax4 4M@N44M@O4         (11) 

General solution 4BCDEFG requires both	@� � 9:PP#< and @� � 9:

#< to be of 
covariance matrices of signal and noise. Depending on applications, the calculations of @� and @� are different. For example, @
 can be estimated during absence of signal, @P is estimated 
from signal and known DOA by equation (10). We have, multiplying the weight vector by a 
scale is not changing SNR. Because steering vector ���,	� is fixed for a fixed signal, choose a 
weight vector to satisfy 4#���,	� � Q with c is a constant. The problem of SNR maximization 
becomes minimizing interference:  4BCDEFG � argmax4 :RST< � argmin	4 �4#@�4�, s.t.4#� � Q  (12) 

Using the method of Lagrange multipliers, solution of the equation [8]: 

4 � Q @OWX��M@OWX�      (13) 

2.2.2. Minimum Mean Squared Error, MMSE 

Minimum Mean Squared Error method minimizes the error signal between transmitted 
signal and a reference signal d(t). In this model, desired user assumes to transmit this reference 
signal, i.e. 
��� � αZ��� where α is amplitude of reference signal d(t) and d(t) is known at the 
receiver. The output signal of the beamformer is to track reference signal [16]. MMSE method 
seeks the weight to minimize average error signal power:  4��[\ � argmin4 9:|����|�<    (14) 

The average error signal power: 
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9:|����|�< = 9:|4#���� 0 Z���|�< � 9:|4#��#404#�Z∗ 0 �#4Z � ZZ∗|�< 
                      � 4#@40 �#]?� 0 ]?�# 4� ZZ∗                  (15) 

where ]?� � 	9:�Z∗<. 
Derivative (15) by 4# and set to zero: 

^\_|`�a�|bc^4M � @40 ]?� � 0     (16) 

We have the solution:  4��[\ � @ !]?�               (17) 

This solution is known as optimal Wiener filter. This method requires reference signal to 
train the beamformer. 

2.2.3. Linearly Constrained Minimum Variance   

The LCMV method belongs to minimization of output power of the beamformer methods. 
This method keeps the response according to direction of arrival of the desired signal fixed in 
order to preserve desired signal while minimizing the impact of undesired components including 
noise and interference that come from other directions other than desired direction. 

We have the output response of signal source with direction of arrival � and frequency 	 is 
determined by 47���, 	�. Linear constraint for the weighs satisfies 47���,	� � Q, where c is 
a constant to ensure that all signals with frequency 	 come from direction of arrival � are passed 
with response c. Minimization of output due to interference is equipvalent to minimizing the 
output power (minimum ouput power): 4�e% � argmin4 9_|'|fc � argmin4 :47@�4<, s.t. 47���,	� � Q  18) 

Using the method of Lagrange multipliers, find min4 $g�4; λ�& 
where: 

g�4; λ� � 9 jk47�kfl � λm47� 0 Qn � 47@�4� λm47� 0 Qn           (19) 

^g^4M � @�4� λ�           (20) 

Solution of the equation: 

4op�q � 0λ@? !� � Q @rWX��M@rWX�     (21) 

In practice, uncorrelated noise component ensures >s is invertible. If c = 1 the beamformer 
is called minimum variance distortionless response, MVDR, beamformer. Solution of MVDR 
beamformer is equipvalent to maximization of SNR solution by replacing A����,	��#��, 	� �@t by	>s and applying invert matrix lemma $� � uvw& ! � � ! 0 � !u$w� !u �v !& !w� !, we have: 

@? ! � $@� � A����7& ! � @� ! 0 @OWX��7@OWX�7@OWX�xyNWb   (22) 

⇒ @? !� � @� !� 0 @OWX��7@OWX��7@OWX�xyNWb � @� !� 0 m�7@OWX�n@OWX��7@OWX�xyNWb � { yNWb�7@OWX�xyNWb|@� !� 

          � Q@� !�      (23) 
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3. SYSTEM THEORY BASED MULTIPLE BEAMFORMING PROPOSAL 

This part proposes multiple beamforming model on basis of system theory and 
identification of dynamical systems and set of necessary and sufficient conditions is determined 
accordingly. 

3.1. Problem statement 

For a beamforming system that is expressed in equation (1). The presented algorithms are 
full rank optimal algorithms. However, full rank methods have limitation that require a large 
number of samples in order to archive stable state when the number of elements of the filter is 
large. Hence, for large scale beamforming system, full rank methods require a large number of 
calculations. On the other hand, when the number of elements is large, the performance of the 
system is bad under pertubation. Model order reduction of a dynamical system becames obvious 
tool to capture the initial understanding of the system and control system to meet the speed in 
real time [17].  

3.1.1. Linearization for a nonlinear system which is essentially order-reduction  

Given a multiple beamforming system model of order M, linear, time invariant and not 
necessarily simultaneously controllability and observability described by reduced-order 
nonlinear model: ���� � �
��� � ���� � 
���           (24) ����� � ����� � ���� � 
���         (25) '��� � 3#����              (26) 

where x(t), i(t) and n(t) are  M dimension vectors, the matrix � is corresponding to P signal 
sources of the appropriate dimension and matrix A decsribes dynamical characteristics of the 
system. Let's define a model of order r, called reduced-order model,	} ~ 6 � �: ����� � ��
��� � ����� � 
����             (27) �� ���� � ������ � ����� � 
����                     (28) '���� � 4�#�����                          (29) 

Satisfying the following conditions: 

(i). L2 criteria for order reduction: ���4�#� � 9_|'�|fc � 9:|4�#��|�< � 4�#@� �4�   (30) 

Constrained by: 

 4�#����, 	� � Q                                 (31) 

is minimized and: 

(ii). Model �4�# , ��� has simultaneously controllability and observability.  

3.1.2. The robustness of reduced-order model 

There are many optimization methods for the problem that was stated, in this paper, the 
authors use the state-optimization method [17]. 
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For a linear model, time invariant of degree M for beamforming system, there exists a 
transformation ��  of dimension rxM full row rank on to model states such as optimal 
parameters of reduced-order model are calculated as following [10, 11]. Choose a sample 
reduced-order model (assumed) which is described by: ��� � ����	 �	u�����      (32) ���� � ���� � 
���       (33) �� � v���      (34) 

Condition equation: ����� � v���� 0 ���u�                (35) 

The matrix Am determines pole position that decides stability of the system. In order to 
maintain the stability of the system, the matrix Am would not create the pole outside the unit 
circle. The component CmBm creates points in z space: �� �	�#���� #      (36) u� � ��#u       (37) v� � v��� #      (38) ����� � ��#����, �� � ��#�     (39) 

Transformation matrix �� is defined by minimizing objective function: �����, 4�#� � 	9:|4�#��#�|�< � 4�#��#@?��4�     

s.t. 4�#����, 	� � Q     (40) 

Modify the constrained optimization problem (40) to unconstrained problem by the method 
of Lagrange multipliers as: g���; 4�#� � 	9:|4�#��#�|�< � 2�$λ�4�#��#�� 0 Q�&   (41) 

where λ is Lagrange multiplier, 4� is fixed, minimized by ��, solved by λ, we have: 

�� � Q @rWX��4�M@�rWX4�M@�rWX4���M@rWX��            (42) 

3.2. Robust optimization by min-max criteria 

Problem of robust optimization finds beamforming weight solution which minimize the 
worst case (the best of the worst conditions) on set of signal ]� (in time domain or frequency 
domain for frequency beamformers) and by �R9�]� , ]��� criteria, with a constant } � 0 and a 
positive define matrix Q [18]. The problem is stated in min-max optimization as: 4��� � �6�min4�max]�:	]�M�]���b�R9�]� , ]���    (43) 

� �6�min4�max]�:	]�M�]���b 9 jk]�� 0 ]�k�l       (44) 

� �6�min4�max]�:	]�M�]���b j4�#@�?4� � k]�k�|1 0 4�#��|�l   (45) 

where the covariance matrix of observation vector @�? � 9_�]�]�#�c.  4���� � �6�min4�max ]�:	]�M�]���b@�r:∑�CD	:a�m@�r@�rMn<
�R9�]� , ]���       (46) 
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Solution of the problem is determined by the method of Lagrange multipliers: 4���� � }� @�rWX��!x�b��M@�rWX��        (47) 

Approximate solution and weight vector can be found by adaptive methods such as steepest 
descent, conjugate direction, gradient, conjugate LMS (Least Mean Squares) and interactive 
Least Mean Squares [19]. 

4. NUMERICAL RESULTS 

4.1. Simulation method 

The performance of the system is performed by means of the Monte-Carlo simulation.  The 
simulation estimates the influence of some parameters on the performance of the system. These 
parameters include ISR (Interference to Signal Ratio); SNR, array configuration (ULA, URA 
and UCA); Number of antennas (M); sampling rate fs; Difference DOA between transmited 
signal and interference ∆θ. 

Monte-Carlo simulation algorithm includes sequence steps: generation of transmitted 
signal, interference and AWGN by parameters of SNR, INR and DOAs; Reception of signal by 
steering vector a(t), interference and AWGN at sensors; Beamforming, beamforming weights 
calculation by processing signal samples; Compare output signal to source signal and evaluate 
NRMSE by Monte-Carlo method.  

Transmitted signal is determined narrow band sine wave signal. Signal is transmitted 
continuously through the training sequence and the amplitude of the signal can vary or change in 
order to get the desired SNR at each antenna. The transmitted signal is of the form: 
��� � √RST��� ��¡ �N⁄ ��x�             (48) 

where fc is carrier frequency, fs is sampling frequency, � is phase of signal, � � $1: S& with N is 
simulated number of samples. 

Interference can be narrow band with the same frequency as signal or broadband 
interference as: ���� � √£ST¤�0,1�          (49) 

AWGN ���� � ¤�0,1� has normal standard deviation 1 appears at every antennas. 

The system performance in simulation is Normalized Root Mean Square Error, NRMSE, 
the final value is the average value of all Q values after each simulation: 

ST�R9 � mean!���¦ § ¨X©∑ k?�ª�«� ?ª�«�kb©¬­X®�CD{?ª�«�| �¯°	�?ª�«��®±         (50) 

Besides the simulation of system performance according to SNR we also simulate the 
perfoermance of the system according to the interference. The severity of the interference is 
determined by INR (interference to noise ratio): £ST$�²& � £RT$�²& � RST$�²&            (51) £RT$�²& (interference to signal ratio) is in dB. 

4.2. Simulation schemes and results 
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4.2.1. Signal estimation when SNR varies 

In simulation schemes A, B, C the configuration of array is ULA (uniform linear array) 
with number of Massive MIMO antennas is 32, the distance between two consecutive antennas 
is ³ 2⁄ . For GPS simulation L1 frequency is fc = 1575.42 MHz this distance is 9.52 cm. Because 
this distance limits the dimension of the system. Therefore, for GPS, the configuration is UCA-7 
and URA-9 (Uniform Circular Array). UCA-7 is shown in Fig. 1, URA-9 is the same, of the 
form 3x3. 
 
 
 
 
 

 
 
 

 
(a)                                                   (b)                                                 (c) 

Figure 1. Simulation configuration (a) UCA-7; (b) ULA; UCA. 

Simulated signal has frequency fc = 5 GHz, ³ 2 � 3Qµ⁄ ; N = 10000 snapshots, and aperture 
length ¶ � �³ 2⁄ . DOA of signal is 300. DOA of interference is -300. Noise impacts equally on 
elements. Monte-Carlo simulation is Q = 200. When NRMSE is simulated according to SNR, 
INR = 0 dB, SNR varies in two ranges: high range [-10 dB÷10 dB] and low range [-30 dB÷-
10dB]. The purpose of two ranges is to consider the performance when signal donates noise and 
when signal is weak (for example, the GPS signal is at -20 dB). 

Table 1. Simulation parameters.  

Parameters Unit 
Simulation schemes 

A B C D 
Signal type - Sine wave    
Carrier frequency fc GHz 5 at SNR [-10 dB÷10 dB] 

1,575 at [-30 dB÷-10 dB] 
5 5 5 

Signal DOA o 30 30 30 30 
SNR dB [-10 dB÷10 dB]; 

[-30 dB÷-10 dB] 
0 0 0 

Standard deviation of 
broadband zero mean e 
AWGN n(t)  

V 1 

Interference  - CW / Wideband 
Difference DOA between 
transmited signal and 
interference 

o 60 60 [-10÷10] 60 

INR dB 0 (*) 5 0 

SIR dB R£T$�²&� RST$�²& 0 £ST$�²& [-10 dB÷10 
dB] 

R£T$�²&� RST$�²& 0 £ST$�²& 

³ 2⁄  

³ 2⁄  

T · �³4¹  

³ 2⁄  

�� 0 1�³ 2⁄  
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Number of interference  1 1 1 1 

Array geometry  ULA/ UCA/ URA ULA ULA ULA 

Number of antennas M  ULA-48; UCA-7; 
URA-9 

32 32 8÷168 

Number of samples N Sample 10000 

Sample resolution and 
beamforming weight  

bit 32 (complex double) 

Monte-Carlo Q  200 

d  ³ 2⁄  

L  ¶ � �³ 2⁄  

The simulation results are presented in Fig. 2 (a-c) according to SNR ranges. In Fig. 2, we 
see that when SNR is low, in weak signal range, beamforming based on min-max optimization 
yields significant result. That is, the system is more robust. But, when signal is good, MVDR 
provides a better result. 

4.2.2. Signal estimation when SIR varies 

This simulation scheme changes SIR to evaluate the performance under interference.In this 
case, the DOA of the signal, the DOA of interference are fixed. The carrier frequency is fixed at 
5 GHz. SNR is 0 dB, note that £ST$�²& � £RT$�²& � RST$�²&. SIR varies in range [-10 dB÷10 
dB]. The simulation results are presented in Fig. 2 (d). We see that the performance of the 
system according to MVDR and LCMV method give best result, meanwhile the min-max 
optimization yields bad result when SIR changes. 

4.2.3. Signal estimation when the difference DOA between transmited signal and interference varies 

In this simulation, parameters of signal, array configuration are fixed, the difference DOA 
between transmited signal and interference varies to consider the dependence of the 
performance, especially when the DOA of the interference is close to the DOA of the signal. The 
result shows that the min-max optimization stays the same while MVDR is most affected. 

4.2.4. Signal estimation when the number of antennas changes 

This scheme will change the number of antennas while the rest of parameters stay 
unchange. SNR = 0 dB, INR = 0 dB. Array configuration is ULA, number of antennas is 2i (I = 
2÷7), from 4 to 128. In this simulation when the number is larger than 72, the result does not 
change too much. In order to increase the data speed, we have to combine beamforming method 
with spatial multiplexing. 
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(a)                                                                                (b) 

 
(c)                                                                            (d) 

 
(e)                                                                                (f) 

Figure 2. NRMSE according to SNR (a-c), SIR (d), the difference DOA between transmited signal and 
interference (e) number of antennas (f). 

5. CONCLUSIONS 

The large scale multiple beamforming system has been analyzed, designed by system 
theory approach on basis of systematic optimization. Optimization problem to reduced-order 
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model in terms of controlability and observability have been developed, using min-max 
criterion. An important result is when the SNR is low, in weak signal range, min-max 
optimization yields significant result. The system is more robust. Thus, by systematic approach, 
the multiple beamforming system can be considered as dymamical system with two parts: 
unobservative part and uncontrollable part. From that, next research direction in this field is to 
develop algorithms to strengthen controlability and observability for beamforming system for 
tracking of moving objects under perturbation and complex environment. 
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