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ABSTRACT

In this paper, the problem of analysis and desifjfae-scale multiple beamforming
system is considered by system theory approactcaigider the response of system parameters
by set of objective functions in a critical conditj which is unable to access measurement data
or the data size is large. The reduced-order migdalilt and the robust solution is found for a
multiple beamforming system. The Monte Carlo sirtiala results show that the proposed
multiple beamforming system yields significant pemiance against over existing methods.
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1. INTRODUCTION

Large-scale multiple beamforming systems and massiultiple input multiple output
(MIMO) systems play important role in the problenfi tbansmitted signal optimization,
increasing efficiency while transmitting, optimalstoring signal at the receiver, the ability to
transmit high speed data in multi-path environméfts example, in indoor environments) for
telecommunications applications [1]; reducing ifgegnce in the global positioning applications
[2]; target localization in sonar and radar [3]tiopzing the transmission of terrestrial Digital
Video Broadcasting (multicast beamforming) [4];.etc

The beamforming system consists of an array processl array of sensors. It is basically
a spatial filter which is used to guide the optimediation or absorb energy in the direction of
arrival of the signal. The criteria used to optientzeamforming systems include maximal output
signal-to-interference-plus-noise ratio (MSINR), nmial mean-square errors (MMSE) and
minimal least-square errors (MLSE) [5].

The complexity caused by the mutual relationshigvben the signal processing stages of a
multiple beamforming system increases with the rembf antennas; especially when the
system is working in a complex environment withtpleation and it has to compromise between
the performance of the system and quality of ser¢@oS) [6]. And, the multiple beamforming
system optimization by criteria, segmented by stagéten do not lead to global optimization
results as expected; especially in critical conditiwhich is unable to access measurement data
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or the data size is large [7, 8]. Therefore, itesessary to develop a theoretical general model to
design multiple beamforming systems on the basisoafbined optimal processes to integrate
the separate processes through multi-objectivenigdtion.

On the basis of system theory and identificatiomyriamical systems we might consider
the impact of the parameters in the system modelthen objective functions under the
perturbation and contraints of measurement datditons [9, 10]. But this process is a strong
nonlinearity, complex in terms of real time caldida, especially in cases when the calibration
is required or requires high accuracy in workingndi [9, 10]. However, for the challenges of
real time due to the complex nonlinearity, lineatian of model system, treatment processes
(essentially model order reduction), applying rdldheory to reduce the order of the model is
widely recognized as the ultimate method [11, 12].

In this paper, two-stage analysis and design oftiptel beamforming systems is
approached by system theory. In the first stagedaced order model is built. In the next stage,
optimal robustness is defined and solved by rothestry. This stage includes two tasks. The
first task is to apply system theory to dynamigadtem such as Bounded Input-Bounded Output
(BIBO) or conditions for controllability, stabilibdity and observability of linear dynamical
system [13, 14] to define set of necessary comtiof robust problem when the system is not
affected by perturbation. Secondly, under pertimbatlynamical model (parameters, order and
model characteristics) changes, sufficient conditis defined in order to preserve model
characteristics as not being perturbed. Obviouslyust problem here determines the existence
and the uniqueness of the solution (sufficient dooddefines the limit of the solution domain).
The problem is built on the basis of applying syste¢heory to model-order reduction.

Applied to the case of multiple beamforming systmmsed on min-max criterion, a system
model is proposed on the basis of model order temtuand the necessary, sufficient conditions
shall be determined accordingly. Note that withyaainical system model, there exists many
different optimal reduced-order models due to déife principles and criteria for model order
reduction, leading to the existence of multiplessat necessary, sufficient conditions. But, for
the reduced-order models which are obtained bygusie same principle, we could move from
model to model, including the set conditions (neaeg and sufficient) because in this case we
use the same principle and reduced-order modelplggmarsimony principle. Moreover, if we
use the same optimal principle, there always exiptanal projection between models [15]. In
this paper, the reduced-order model obtained biyeqgpstate-optimal projection on the basis of
an assumption model with nhominal values and anmapti projection in min-max criterion
multiple beamforming systenT.he condition set which needs to be determinedviged that
static users correspond with the cases where gtermyis not affected by diffraction is the set of
limits to the nominal value of the decay model e tpre-selected model in the case the
parameters unchanged.. The set of sufficient ¢tiongi include inequality that is determined
with assuming that the users are moving accordiritpé case that the system is perturbed, the
multiple beamforming system works as in nominal emddbviously, the nature of a dynamical
system theory (controllability, stabilisability antdservability) is found in the implementation of
optimization process.

The simulation results prove two problems. Firbg proposed model is the same as
theorical solution. Second, the proposed modeldgidignificant performance against over
existing methods.

The rest of the paper is organized as follows.dctien Il, the necessary background is
given about beamforming methods. Section Il pres#re proposed min-max criterion multiple
beamforming system. Section IV provides simulatiesults and characteristics of the proposed
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system. Finally, the conclusions of this paper fareconcluding remarks, and suggestions for
further researches.

2. PRELIMINARIES

2.1. Signal model

Consider a beamforming system with elements. Denotg(t) is transmitted signal, the
direction of arrival (DOA) angle of the wavefrorlape associated witH{t) is 8, vector of array
observation fronM elements at time instahis expressed as :

x(t) = a0, w)s(t) +i(t) + n(t) (1a)
State equation
x(t) = Ax(t) +i(t) + n(t) (1b)

wherea(6, w) is steering vectoi(t) is the interference amt) is a Gaussian noise vector.
a(G,a)) — [1 ejwdsin(@)/ceijdsin(@)/c ejw(M—l)dsin(@)/c]H (2)

with: d is the distance between the two elementss the carrier frequency armds the speed of
light. Steering vector depends on the directioramival and the frequency. For simplicity, we
denotea(8, w) is a. The single beamforming model is expressexi(&s= as(t) + i(t) + n(t).

The multiple beamforming model is expressed as:
x(t) = As(t) +i(t) + n(t) (3a)
x(t) = Ax(t) +i(t) + n(t) (3b)
whereA = [a(6,, w;), a(6,, w,), ...a(6p, wp)] according tdP signal sources.

There are two general beamforming systems, inctudiarrow band beamforming and
broad band beamforming. In narrow band beamformmogdel, the output signal of beamformer
at time instant is y(t) obtained by linear combination of signaldwklements as:

MOEDEAG) (4)
For broad band model, the output signal is exprkase
y(®) = XL XpZo wip xi(t — p) 5)

with K — 1 is number of delay stages at each channél' @lement of the array. The output
signal is expressed as:

y(®) = wix(t) (6)
wherex is the received signal vector. Vecterof lengthM represents the weights as:
wi = [wi,wi, ..., wi_i] = [wT]* (7)
The response of single beamformer is expressed as:
r(6,w) = wlHa (8)

The beampattern is defined as squared magnitudéfofv). Note that each of weight in
vectorw impacts to the response of beamformer in terntisref and space.

Output power or variance of estimated signal igiaeined as:
Efly|?} = w'E{xx"}w 9)
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whereE{. } denotes mean.

If the signal is wide sense stationary, the covegamatrixR, = E{xx"}is statistically
independent over time. Although signal is not ofséationary, but we design and evaluate the
performance of optimized beamforming based on tpothesis that the signal is wide sense
stationary.

The covariance matrix of the narrow band sigidlat frequencyw,, is:
R, = d2a(8, wy)a (8, wy) = c2aa (10)

Wheres? is the average signal power.
2.2. Statistically optimal beamforming techniques

Beamforming is an important technique in array pssing in order to optimize desired
signal while minimizing interferences. Statistigathptimal beamforming techniques include
maximization of signal-to-noice ratio (SNRylinimum Mean Squared Error (MMSE), Linearly
Constrained Minimum Variance (LCMV) and minimum pece distortionless response
(MVDR) are widely applied [5,8]. Design of the bdanmer under statistically optimal method
requires statistical properties of the source amdstatistical characteristics of the channel.

2.2.1. Maximization of SNR

The weight vector is solution of maximization of Bigdroblem:
wHRSw

wHR,w

WMaxSNR = argm“:;lx (11)

General solutionwy,.sng Fequires botR, = E{ss”’} and R,, = E{nn”} to be of
covariance matrices of signal and noise. Dependimgpplications, the calculations Rf and
R,, are different. For exampl®,, can be estimated during absence of sigRalis estimated
from signal and known DOA by equation (10). We haweiltiplying the weight vector by a
scale is not changing SNR. Because steering va€tiw) is fixed for a fixed signal, choose a
weight vector to satisfwa (8, w) = c with cis a constant. The problem of SNR maximization
becomes minimizing interference:

Wpaxsnr = argmax{SNR} = argmin (W?R,w), s.twfa = ¢ (12)
w w
Using the method of Lagrange multipliers, solutidrhe equation [8]:

Ryla

W=C—F——7"
aflR;'a

(13)

2.2.2. Minimum Mean Squared Error, MMSE

Minimum Mean Squared Error method minimizes theoregignal between transmitted
signal and a reference sigrift). In this model, desired user assumes to transsitreference
signal, i.e.s(t) = ad(t) wherea is amplitude of reference signd(t) andd(t) is known at the
receiver. The output signal of the beamformer isrdck reference signal [16]. MMSE method
seeks the weight to minimize average error sigoalgu:

Wymse = argmin £ {le®?} (14)

The average error signal power:
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E{le(t)|?} = E{Jw/x(t) — d(t)|*} = E{|wxx"'w — wHxd* — x"'wd + dd*|?}
= wlRw — x'r,; — rfLw + dd* (15)
wherer,; = E{xd*}.
Derivative (15) byw! and set to zero:
dE{le(t)|?}

awhH = Rw — I‘xd =0 (16)
We have the solution:
Wiynmse = R My (17)

This solution is known as optimal Wiener filter.i$method requires reference signal to
train the beamformer.

2.2.3. Linearly Constrained Minimum Variance

The LCMV method belongs to minimization of outpawer of the beamformer methods.
This method keeps the response according to directi arrival of the desired signal fixed in
order to preserve desired signal while minimizihg impact of undesired components including
noise and interference that come from other divestother than desired direction.

We have the output response of signal source wigicttbn of arrivald and frequencw is
determined bw"a(6, w). Linear constraint for the weighs satisfie§a (6, w) = c, wherec is
a constant to ensure that all signals with frequemcome from direction of arrivél are passed
with responsec. Minimization of output due to interference is gayalent to minimizing the
output power (minimum ouput power):

Wyop = argm“i,nE{IyIZ} = argm“iln{wHRxw}, stwla(8,w)=c 18)

Using the method of Lagrange multipliers, fimdin[£(w; )]
w

where:
L(W;\) =E {|wa|2} +AwHa—c) = wHR,w + A(wHa —¢) (19)
2L =Rw+1a (20)

Solution of the equation:
R;la

_ -1, _
Wiemy = —ARy @ = ¢ 4=
aR; a

(21)

In practice, uncorrelated noise component ensRyds invertible. Ifc = 1 the beamformer
is called minimum variance distortionless respoMd¥DR, beamformer. Solution of MVDR
beamformer is equipvalent to maximization of SNRRion by replacingr?a(8, w)a’ (6, w) +
R, byR, and applying invert matrix lemmaA + BCD] ! =A"1—-A"1B[DA"!B+
C 1]"'DA™ 1, we have:

RylaalR;!

-1 _ 2 H1-1 _ p-1 _
R:' = [Ry +0faa” ™" =R, afR lato;? (22)
= Rilg = R:lg— Rne@’Rile _ po1, (@"Ri'a)Rila ( o ) la
x n aflRyta+o;? n af'lRyta+o;? aiR;la+o;2/) 1
= cR;;'a (23)
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3. SYSTEM THEORY BASED MULTIPLE BEAMFORMING PROPOSAL

This part proposes multiple beamforming model orsidaof system theory and
identification of dynamical systems and set of ssaey and sufficient conditions is determined
accordingly.

3.1. Problem statement

For a beamforming system that is expressed in Egquét). The presented algorithms are
full rank optimal algorithms. However, full rank theds have limitation that require a large
number of samples in order to archive stable stéwen the number of elements of the filter is
large. Hence, for large scale beamforming systethydnk methods require a large number of
calculations. On the other hand, when the numbeiehents is large, the performance of the
system is bad under pertubation. Model order reoluaf a dynamical system becames obvious
tool to capture the initial understanding of theteyn and control system to meet the speed in
real time [17].

3.1.1. Linearization for a nonlinear system which is essentially order-reduction
Given a multiple beamforming system model of orlferlinear, time invariant and not

necessarily simultaneously controllability and alkability described by reduced-order
nonlinear model:

x(t) = As(t) + i(t) + n(t) (24)
x(t) = Ax(t) +i(t) + n(¢) (25)
y(t) = whx(t) (26)

wherex(t), i(t) andn(t) are M dimension vectors, the matriX is corresponding t® signal
sources of the appropriate dimension and matrixeésdbes dynamical characteristics of the
system. Let's define a model of ordecalled reduced-order model< r < M:

X () = Aps(t) +i,() + n,(2) (27)
X, (6) = Apx(t) +i,(t) + n.(8) (28)
Vr ) = er:lxr ® (29)

Satisfying the following conditions:
(i). L, criteria for order reduction:
J2(wi) = E{ly,1?} = E{lwf’x,|*} = w/R,w, (30)
Constrained by:
wiA.(8,0) =c (31)
is minimized and:
(ii). Model (wf, A,) has simultaneously controllability and observaili

3.1.2. Therobustness of reduced-order model

There are many optimization methods for the probleat was stated, in this paper, the
authors use the state-optimization method [17].
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For a linear model, time invariant of degree M B@amforming system, there exists a

transformationT, of dimensionrxM full row rank on to model states such as optimal
parameters of reduced-order model are calculatetblbmving [10, 11]. Choose a sample
reduced-order model (assumed) which is described by

X;m = AnXy, + Bhu(t) (32)
u(®) = i() + n(e) 33)
Ym = CnXm (34)

Condition equation:
Fpn(z) = Cr(I; — Ap)By, (35)
The matrixA, determines pole position that decides stabilityhaf system. In order to

maintain the stability of the system, the mathix would not create the pole outside the unit
circle. The componer@,B,, creates points inspace:

A, = THA, T (36)
B, = T/B (37)
C, =C,T ! (38)
x.(t) = TEx(i), A, = THA (39)

Transformation matrifT;,. is defined by minimizing objective function:
J2(Ty, er:l) = E{lwrl:lTr{-lez} = er:ITrl:IRxTrwr
st.wlA,.(8,w)=c (40)

Modify the constrained optimization problem (40utaconstrained problem by the method
of Lagrange multipliers as:

L(T;wi) = E{lwT/'x|?} + 2R[A(W/ TFA, — ¢)] (41)
wherel is Lagrange multipliemw,. is fixed, minimized byT,, solved byA, we have:
R:'A,wi'Ry!
T = € R w, ATRETA, (42)

3.2. Robust optimization by min-max criteria

Problem of robust optimization finds beamformingigi® solution which minimize the
worst case (the best of the worst conditions) dnogasignalr; (in time domain or frequency

domain for frequency beamformers) and M§E (rf, f;) criteria, with a constanf > 0 and a
positive define matrixQ [18]. The problem is stated in min-max optimizatam

Wyyy = arg min, Max, . o qr <q? MSE (xy, Tf) (43)
_ “ 2
= arg miny, Max, . for <42 E {|rf - rf| } (44)
_ = 2
= arg miny, Max, . Hor <42 {wﬁRxwr + |rf| |1 - wﬁAr|2} (45)

where the covariance matrix of observation veRtpe= E{(r;rf')}.

Wyym = arg min,, max MSE (xf, r) (46)

Iy r};’Qrfsqz
R,:Y max{tr(R,RY)}
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Solution of the problem is determined by the metbbdagrange multipliers:
- RY'A,
Wunm = 4° Tz ATRTA (47)
Approximate solution and weight vector can be fobpddaptive methods such as steepest
descent, conjugate direction, gradient, conjugd#SL(Least Mean Squares) and interactive
Least Mean Squares [19].

4, NUMERICAL RESULTS
4.1. Simulation method

The performance of the system is performed by meatise Monte-Carlo simulation. The
simulation estimates the influence of some pararseate the performance of the system. These
parameters include ISR (Interference to SignaldaBNR, array configuration (ULA, URA
and UCA); Number of antennaM); sampling ratefs; Difference DOA between transmited
signal and interferenc&?.

Monte-Carlo simulation algorithm includes sequersteps: generation of transmitted
signal, interference and AWGN by parameters of SNIR and DOAs; Reception of signal by
steering vectoa(t), interference and AWGN at sensors; Beamformirggniiforming weights
calculation by processing signal samples; Compatpub signal to source signal and evaluate
NRMSE by Monte-Carlo method.

Transmitted signal is determined narrow band simewsignal. Signal is transmitted
continuously through the training sequence andathplitude of the signal can vary or change in
order to get the desired SNR at each antenna.r@ihenitted signal is of the form:

s(n) = VSNRei2mUe/fn+6 (48)

wheref, is carrier frequency; is sampling frequency, is phase of signah = [1: N] with N is
simulated number of samples.

Interference can be narrow band with the same émecu as signal or broadband
interference as:

i(t) =VINRN(0,1) (49)
AWGN n(t) = N (0,1) has normal standard deviation 1 appears at eveeyaas.

The system performance in simulation is Normaligembt Mean Square Error, NRMSE,
the final value is the average value of@Nalues after each simulation:

SR

NRMSE = mean;<4<q |max(xq(k))—min(xq(k))|

(50)

Besides the simulation of system performance agugrtb SNR we also simulate the
perfoermance of the system according to the imemfie. The severity of the interference is
determined by INR (interference to noise ratio):

INR[dB] = ISR[dB] + SNR[dB] (51)
ISR4p) (interference to signal ratio) is in dB.

4.2. Simulation schemes and results
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4.2.1. Sgnal estimation when S\NR varies

In simulation schemes A, B, C the configurationaofay is ULA (uniform linear array)
with number of Massive MIMO antennas is 32, thdattise between two consecutive antennas
is A/2. For GPS simulation L1 frequencyfis= 1575.42 MHz this distance is 9.52 cm. Because
this distance limits the dimension of the systeimer&fore, for GPS, the configuration is UCA-7
and URA-9 (Uniform Circular Array). UCA-7 is shown Fig. 1, URA-9 is the same, of the
form 3x3.

(M —1)A/2 MA
O © o
@ (b) ©

Figure 1. Simulation configuration (a) UCA-7; (b) ULA; UCA.

Simulated signal has frequenigy= 5 GHz,A1/2 = 3cm; N = 10000 snapshots, and aperture
lengthL = MA/2. DOA of signal is 3 DOA of interference is -30Noise impacts equally on
elements. Monte-Carlo simulation @ = 200. When NRMSE is simulated according to SNR,
INR = 0 dB, SNR varies in two ranges: high rande [B+10 dB] and low range [-30 dB+-
10dB]. The purpose of two ranges is to considepdgréormance when signal donates noise and
when signal is weak (for example, the GPS signat {20 dB).

Table 1. Simulation parameters.

. Simulation schemes
Parameters Unit A B C D
Signal type - Sine wave
Carrier frequency GHz | 5at SNR [-10 dB+10 dB] 5 5 5
1,575 at [-30 dB+-10 dB
Signal DOA © 30 30 30 30
SNR dB [-10 dB+10 dBj; 0 0 0
[-30 dB+-10 dB]
Standard deviation of \Y 1
broadband zero mean €
AWGN n(t)
Interference - CW / Wideband
Difference DOA betwee  ° 60 60 [-10+10] 60
transmited signal and
interference
INR dB 0 * 5 0
SIR dB SIR[4p [-10 dB+10 | SIR|4p
= SNR{45) — INR4p) dB] = SNRgp) — INR4p)
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Number of interference 1 1 1 1

Array geometry ULA/ UCA/ URA ULA ULA ULA

Number of antenna¥ ULA-48; UCA-7, 32 32 8+168
URA-9

Number of samplehl Sample 10000

Sample resolution and bit 32 (complex double)

beamforming weight

Monte-CarloQ 200

d A/2

L L=MA/2

The simulation results are presented in Fig. 2) @ecording to SNR ranges. In Fig. 2, we
see that when SNR is low, in weak signal rangemb@aning based on min-max optimization
yields significant result. That is, the system isrenrobust. But, when signal is good, MVDR
provides a better result.

4.2.2. Sgnal estimation when SR varies

This simulation scheme changes SIR to evaluatpe¢hiermance under interference.In this
case, the DOA of the signal, the DOA of interferiace fixed. The carrier frequency is fixed at
5 GHz. SNR is 0 dB, note th&WR[45) = ISR[4p] + SNR|45]- SIR varies in range [-10 dB+10
dB]. The simulation results are presented in FigdR We see that the performance of the
system according to MVDR and LCMV method give bestult, meanwhile the min-max
optimization yields bad result when SIR changes.

4.2.3. Sgnal estimation when the difference DOA between transmited signal and interference varies

In this simulation, parameters of signal, arrayficpmation are fixed, the difference DOA
between transmited signal and interference vari@scaonsider the dependence of the
performance, especially when the DOA of the interfiee is close to the DOA of the signal. The
result shows that the min-max optimization staysghme while MVDR is most affected.

4.2.4. Sgnal estimation when the number of antennas changes

This scheme will change the number of antennasewtiie rest of parameters stay
unchange. SNR = 0 dB, INR = 0 dB. Array configuratis ULA, number of antennas is(R=
2+7), from 4 to 128. In this simulation when themher is larger than 72, the result does not
change too much. In order to increase the datadspeehave to combine beamforming method
with spatial multiplexing.
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Figure 2. NRMSE according to SNR (a-c), SIR (d), the differe DOA between transmited signal and
interference (e) number of antennas (f).

5. CONCLUSIONS

The large scale multiple beamforming system has bm®alyzed, designed by system
theory approach on basis of systematic optimizat@ptimization problem to reduced-order
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model in terms of controlability and observabilihave been developed, using min-max
criterion. An important result is when the SNR @w) in weak signal range, min-max
optimization yields significant result. The systeayimore robust. Thus, by systematic approach,
the multiple beamforming system can be consideediyanamical system with two parts:
unobservative part and uncontrollable part. Froat,thext research direction in this field is to
develop algorithms to strengthen controlability artservability for beamforming system for
tracking of moving objects under perturbation aathplex environment.
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