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ABSTRACT

The main purpose of this article is to presentyitall solutions for bending, buckling and
free vibration analysis of cylindrical panel, whialre composed of functionally graded materials
(FGMs). Equations of motion are derived using Heonik principle. The first-order shear
deformation theory is used for developing Naviestdutions of simply supported cylindrical
panel. Comparison studies are presented to vémfyalidity of present solution. It is found that
the presented results are close to those exisiing. effect of volume fraction distributions,
panel aspect ratio, and side-to-thickness ratiahendeflections, buckling loads and natural
frequencies is also investigated.

Keywords: functionally graded cylindrical shell, shear defatran theory, bending, buckling,
vibration.

1. INTRODUCTION

The concept of FGM was proposed in 1984 by Japaneseentists as a new class of
materials that can resist high temperature. Sinea FGMs are being increasingly used in the
aeronautical and aerospace industry as well ashier dields of modern technology. FGMs are
microscopically inhomogeneous, that exhibit cortumsl variation of material properties from
one surface to another and thus eliminate the sstscentration generally found in
conventional laminated composites. The fact shdvas having a good understanding of the
structural and dynamic behavior such as the defitomacharacteristic, natural frequencies,
critical buckling loads are extremely needed.

Actually, there are a majority of researchers wheduboth of three-dimensional and two-
dimensional theories for static and dynamic behaaralysis of cylindrical shells with different
boundary conditions and materials. Evidence fog ttan be found in the following particular
studies. First of all, in 1989, a study of bendimipration and buckling of cross-ply circular
cylindrical shells with various shell theories wgisen by Khdeir, Reddy, and Frederick [1].
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Next, an elasticity approach was proposed by Varaatad Bhaskar in 1991 [2] for bending
analysis of laminated orthotropic cylindrical sh@lhen, Soldatos and Ye [3] presented three-
dimensional static, dynamic, thermoelastic and boglanalysis of homogeneous and laminated
composite cylinders in 1994. Some simple solutifmmsbuckling loads of thin and moderately
thick laminated composite cylindrical shells andigda were also presented by Geier and Singh
in 1997 [4]. Later, in 2007, Matsunaga [5] studigoration and buckling behaviors of cross-ply
laminated composite circular cylindrical shells @cing to a global higher-order theory.
Moreover, Zhao, Lee, and Liew [6] used the elenfimr@-kp-Ritz method to analyze the static
behavior and free vibration of FGM shells subjedtechechanical or thermomechanical loading
in 2009. Another study of Zhao and Liew [10] in 20dould not be ignored here is that a mesh
free method for analysis of the thermal and mechhhuckling of functionally graded cylindrical $he
panels. Recently, in 2014, Shadmehri, Hoa, and atofj7] investigated the effect of
displacement field on bending, buckling and vilmatof cross — ply circular cylindrical shells
using the first-order shear deformation theoryadidition, at this time, in 2014, Su, Z., Jin, G.,
& Ye, T. [9] used Rayleigh—Ritz method accordingthe first-order shear deformation shell
theory for free vibration analysis of moderatelyckhfunctionally graded open shells with
general boundary conditions.

On the other hand, there have been a majority wfiess including static and dynamic
behavior or linear or non-linear analysis aboutcfiomally graded cylindrical panel which are
subjected to thermal/mechanical loads or in contlinaof these loads. It takes into account
some typical studies and researchers as [11 — 17].

However, most of these studies related to laminet@dposite materials and rare literature
has been reported for FGM cylindrical shell andgbamherefore, it is essential to formulate a
suitable model which can be used for solving thpeeblems of bending, bucking and free
vibration in a combination for FG cylindrical stll

In this paper, an analytical solutions based onfitise shear deformation theory are used
for analyzing bending, buckling and vibration of E@indrical panel. The numerical results are
investigated and discussed with the other authdtiaa different solution.

2. FORMULATION OF THE PROBLEM AND MATERIAL PROPERTI ES

Consider a functionally graded cylindrical panethwiengthL, radiusR, span angle and
thicknesgh (Fig.1). The elastic material properties vary tlgiothe panel thickness according to
the volume fractions of the constituents. The togage ¢ = h/2) of the panel is ceramic-rich,
whereas the bottom surface= - h/2) is metal rich. The effective properties of thadtionally
graded material at any thickness coordirzatan be expressed following power law distribution
as [6]:

P(z)=(R.~Pn).9(2)+R, 1)
with
p
9(2)=(%+§] (0<psw)

whereP(2) denotes the effective material propertigg,and P, represent the properties of the
metal and ceramic, respectivet)z) is the volume fraction function aqds the volume fraction
exponent. The effective material properties ofdindrical panel, including Young’'s modulus
E, densityp vary according to Eq. (1) and Poisson’s coefficisr#ssumed to be constant.
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Figure 1. Geometry of the cylindrical panel.

3. THEORETICAL FORMULATION
3.1. Kinematic relations

The displacement field is assumed according tofitkeorder shear deformation theory.
The three displacement componengsd,z), v(x,6,2) andw(x 6,z) at any point in the cylindrical
panel domain in thg, 8 andz directions are expanded in Taylor's series in $evfrthe thickness
coordinate and expressed as Reddy [8]:

u(x,8,zt)=u,(x,0.t)+z8 x.01t)
v(x,6,z,t)=v,(x,0,t)+z8,x,01) (2)
w(x,8,z,t)=w,(x,6.t)

The parametersy,,v, are the in-plane tangential displacements agds the transverse

displacement of a poink,(6) on the mid-surfaceg, ,g, are rotations of a normal to mid-surface
aboutd andx axis, respectivel\t. presents the time.

The linear strain components are obtained fromrstralisplacement relations for linear
elasticity theory.

{5} :{£X’£6’yx€1y€z’yxz} Or{éf} :{£O}+Z{k} (3)
where:
ou, 0v, . w, du,  0v, ow vV, 0w
{&} :{5x015y01yx901yezo1yxzo} :{E 16—;+Eo,a—;+a—;,a—;+ge _Eo1a—xo+¢9x} (3a)
06, g, 06, a6,
Kl ={k k. k., 00=]x 2% 7% b
{} {X’ PR Al ’q {ax ’ag 1ae+ax 3 1% (3)
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3.2. Stress — strain relation
The linear constitutive relation of an FG cyliradti panel can be written as

o) [c, ¢, 0 0 07](s £ Kk,
o,| |C, C,, O 0 0]]lg £ K,
o= 0 0 Ciq 0 0 |4¥e=[C]sVmi+2z[C]ike (4)
o, 0 0 0 Cy Oy, v 0
og,,] L0 0 0 0 Cgll|y, Vv 0

The elements of stiffness matrix are defined dsvd:

_E@ ~ _VE@. ~ __E@

= ; = ; = =G; v - Poison ratio
Zo1-p?’ R 1-p? T T 2(1+)

C,=C

Cl

3.3. Equations of motion

In general way, the equations of motion are derivsidg the the Hamilton’s principle and
can be written as Reddy [8].

ON, 0N, 0%y, 9°8 oM, oM, 0%y, 0°p
—X+ +q =l,—>+1,—=; L+ —X2-Q, =1, —+I =~
ox  RIG xTloge Thge ox ag O Thige thge
ON, . ON, Q, 0%, 0°d, oM, O0M, 0, 0’5,

X + +=2+q,=1 +1 : + X -Q, =, —*+I,—%; 5
ox 96 R eTlogp Thgp a0 “Tox 2Tl tle ®)
0Q,, 0Q, N, 0°w,

*+ -——-N(w)+q,=l,—=";
ox TRoe R )T =lgn

_— 0w,  — d*w, o
whereN(wo)—Nx.aX2 +Na.a€2 are compressive in-plane loads and,,§,.q,) are

distributed body forces acting on the mid-face.cearesultants, moment resultants and inertias
in Egs. (4) are defined as:

h/2 h/2
{Nx NH Nx&}: J- {Jx Og JXH}dZ; {Qx QG}:KS I {sz JGZ}dZ; (6)
-h/2 -h/2
h/2 with K¢ is the shear -correction factor

My My My}= J- {on 05 o0w}zdz; (K; = 56) and the inertia terms are
~-h/2 h
los 13,1, = [3,0(12.2 )z
2
By substituting the stresses from Eqs. (4) into. Eg)s the force and moment resultant can
be written in terms of displacement variable nanelyv, w, 6, 8, ). Now, if one substitutes

these relations into Eqgs. (5), the governing eguatfor the FG cylindrical panel are obtained in
terms of displacement variables.
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4. CLOSED-FORM SOLUTIONS FOR THE SIMPLY SUPPORTED CYLINDRICAL PANEL

Consider a simply supported cylindrical panel wattial and circumferential lengths are
denoted by L and a, respectively under only compressive in-plane axialad

(N,=-N°,N,=0) and the distributed body force acting on the faick in the vertical

direction @,). Based on the Navier approach, the displacemaktawns satisfying the simply
supported boundary conditions can be expressdwifotlowing forms:

Up(x,8,t) = iium cos@x )sinGg g 8.(x,0,t)= iié’m cos@x )sinGg '

m=1n=1 m=1n=1

vo(xﬂ.t)=iivo sin(ax)cos( B0)e™; ee(xﬂ,t):Z:l;lHem sin@x)cospo g -

W(x0.)=> S W, sn(ax)sin( 6)e™:;

m=1n=1

wherei=+-1 , a=mz/L , B=nml/¢ , mn=135.. ; w is the natural frequency. The
transverse load is expanded in the double-Fourier sine series as

0,(x8)=3 3 Q,, sin(ax)sin( 56)

m=1n=1

do for sinusoidally distributed load;

where
4 L
”":L_J. 0,(x,8)sin(ax)sin( £8)dxdé = 16q,
0 mn77

By substituting Eq. (7) into Egs. (5) which are eegsed in terms of displacemenisy, w,
6y, 65) we get the governing equations in the short fammerms of displacement variable
namely Uom: Vo Wom: @i Gom ) @S fOllows

([Sls.s = @ [M]g.g) X} ={ 0 (8)

in which, [S] and [M] are elastic stiffness and mawatrices respectivefyx, }is the

displacement field vector{d}is load vector andwis the circular natural frequency
corresponding witim-th mode inx-direction anch-th mode ing-direction.

o

for uniformly distributed load;

where,
$Omn 0 ( 0’ +A;5 ) % :(ASSO,Z_FA‘ABz)KS
Omn 0 _ . )aﬂ
{an} =1 Worm ;{Q} =1Qm with 2 =(As* Ay .S%=N a*+N, B
Bem 0 = (Blla + BGGB ) S, = AaK,
Gom 0 = (Blz + Bee)aﬁ S = AuBK,
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h/2
S = (A +A) Sy =(AK, +Dua’+D.8) A= [ Gz 5 _“’fczzdz.
-h/2 i = ii 5
S24 (BlZ + Bﬁﬁ)aﬁ S45 (DlZ + DGG)aﬁ : -h/2 :
S =(Bua® +BuB°) S

h/2
(AuK,+Dga® +D,5) B, = j C,zdz; with (i,j)=(12456)
-h/2

From the Eq. (8), we have three cases of the probkefollows:

= For bending analysis, the closed-form solution banobtained by setting the natural
frequencyw and buckling load\® in Eq. (8) equal to zero. Then, the displacemargsbtained
from the following equation:

[S] { X} ={cl (8a)

By solving the above equation (8a), the deflectiatue \.,) Which is contained in the
displacement field vectdrX,,,} , can be obtained.

= For buckling analysis, the closed-form solution ba obtained by setting the frequency
w and transverse loaglin Eq. (8) equal to zero. Thus, the buckling Idddcan be obtained

from the following equation:

[S]{ X} =0 (@)
For nontrivial solution, the determinant of the ffiegent matrix in Eq. (8b) must be zero.
This gives the expression for buckling load’. With each choice ofm andn, there is a
corresponsive unique value dF°. The critical buckling loadNy,) is the smallest value d¥°.
N, =min{N¢, ) (80*)
= For free vibration analysis, the closed-form solutis obtained by setting the buckling
loadN° and transversein Eq. (8) equal to zero as

(IS]-e?[M]) { X} ={0} (8¢)

The resulting equation takes the form of an eigkmvgroblem. Thus, the closed-form
solution of natural frequeney can be obtained from the following equation:

[S]-«f[M]={0} (8c¥)

5. NUMERICAL RESULTS AND DISCUSSION

For a numerical investigation, the program of niatt@des are developed based on the
present theoretical model to analyze bending, lingkhnd free vibration response of simply
supported FG cylindrical panel. The material prtipsrof ceramic and metal are as follows

= Ceramic-ZrQ: E; = 151 GPap. = 3000 kg/rﬁ; v=0.3

= Metal (Al): E, = 70 GPap,, = 2707 kg/nt v = 0.3
5.1. Bending analysis

A fully simply supported FG cylindrical panel subtled to a uniform load is first studied.
The geometric properties of the panel are denoyed$ 0.2 m, R= 1 mandg = 0.2rad. The
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magnitude of the uniform load ig, =10°N/m”. Table 1 shows a validated comparison the

displacements in radial direction at the panel@eobtained between the proposed method with
those from Zhao et al [6] using the element — fkpeRitz method. It could be taken into
consideration that those results have a good agm@erividence for this can be seen that these
differences is not significant (less than 0.40 %).

Table 1. Nondimensional deflectioﬁ/(Vv= W, / h) of cylindrical panel with various volume fraction
exponenp and radius to thickness ratish.

the volume fraction exponentp

R/h Model
p=0.5 p=1 p=2
Zhao. X et al [6] 0.003824 0.004279 0.004683
50 [Present] 0.003837 0.004296 0.004702
Difference (%) 0.34 0.40 0.40
Zhao. X et al [6] 0.05425 0.06072 0.06658
100 [Present] 0.05441 0.06091 0.06679
Difference (%) 0.29 0.31 0.31
200 Zhao. X et al [6] 0.6503 0.7283 0.8057
[Present] 0.6501 0.7281 0.8056
Difference (%) 0.03 0.03 0.01
0.08 T T T T T T T T T 0.7 T T T T T T T T
wors <o demer T ol L e 2
| | | | ,0‘"\—— | | | ! | | | | | | | (s
e Eeme)
E;0065,,,L;/g,,J,,J.,,L,,L,,L,,L,J,,, E | | | | | | | /’\
N4
g 0.06(- — 5™— — — |l—— A —— 4 —— 4+ — = — = — == — = — — g | | | | | | X4 |
NV
I i S S i S A
z I | | | | | | | | Z02F——fT -ttt
L] e e e e e e e | | | | [Pl | |
R R
B S A IR
0.04 1 1 1 1 | 1 1 | 1 I_-n-—f“ 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200
p R/h
Figure 2. Nondimensional deflectiow versus the Figure 3. Nondimensional deflectiom versus
volume fraction exponernt radius to thickness rati@/h.

Figures 2 and 3 show the effect of the volume ivacexponenp and radius-to-thickness
ratio on dimensionless center deflection of cylicalr panel. It can be seen clearly that, as a
general trend, the dimensionless deflection ine@gasamatically for both case of the volume
fraction exponenp and radius-to-thickness ratio have increasing.

5.2. Vibration analysis

The natural frequencies of FG cylindrical pandhigestigated in this section. A cylindrical
FG panel withy = 0.1 rad, thickness to length ratid/L = 0.1 is considered. The
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nondimensional frequencies with various volumetioacexponen{p) and radius to length ratio
(R/L) are given in Table 2. The obtained results are @vetpwith those given by Su, Jin, and
Ye [9] using Rayleigh-Ritz method. It is seen clgdinat the results are generally in very good
agreement.

Table 2. Nondimensional frequencie® (Z): (wL? ./ pc 1 E. ) /h) of cylindrical panel with
the different volume fraction expongmaind radius to length ratie/L.

the volume fraction exponentp

R/L Model
p=0 p=0.5 p=1 p=2 p=5 p=10
Su. Z et al [9] 6.1674 5.5622 5.2964 5.0895 4.911A4.7787
2 [Present] 6.1755 5.5693 5.3036 5.0969 4.9203 4.7877
Difference (%) 0.13 0.13 0.14 0.15 0.17 0.19
Su. Z et al [9] 5.8364 5.2532 5.0052 4.8241 4.675%.5506
5 [Present] 5.8580 5.2710 5.0225 4.8414 4.6939 4.5692
Difference (%) 0.37 0.34 0.34 0.36 0.39 0.41
Su. Z et al [9] 5.7742 5.1971 49533 4.7774 4.6338.5096
20 [Present] 5.7984 5.2174 49730 4.7972 4.6546 4.5302
Difference (%) 0.42 0.39 0.40 0.41 0.45 0.45
Su. Z et al [9] 5.7702 5.1942 49509 4.7754 4.6319.5075
100 [Present] 5.7946 5.2146 49708 4.7955 4.6529 4.5283
Difference (%) 0.42 0.39 0.40 0.42 0.45 0.46

Figure 4 and 5 describe the nondimentional fregesncw of the simply-supported
cylindrical FG panel with various volume fractiompenent(p) and radius-to-thicknessRth)
ratio. It is found that the nondimensional frequesaecrease dramatically for both case of the
volume fraction exponerfp) and radius-to-thickness ratiB/f) increasing.

6.4 T T T T T T T T T 55 T T T T T T T
I I I I I I I I I I I I I I I I
S T T\ 1T [ psotiesen]
9 I I I I I I I I I 4l -\ Jo_d__1_ _T--T--——o- -
[ e el B I e e il et Bt Bl I I I I I I |
9 | | | | | | | | | sl - - L
F Y T O S Iy N IR R R ] | I I [ I I |
g I I I | | | I I | g | | | I I I I
s I I I I g\~~~ i Bt Bt Sl it et el i
856\ - - - - 4 — | —o—FsDT[Presen ~ B | | | | | | |
= | | | || ==*== FSDT [Su et. al.,2014] S 30F-—-1—§-1—— B i e e e il B
S 5.4 I | il = | | | | | | |
2 ™ | $ 25 — —1— - N— — O
£ £ ) | | | I I I I
T 52 2 | | | | ! | | |
s g2 I | | [ [ | | |
s R R CEE SR EEEE R
I I I | I I I
4.8 OF ———— == — A= — 4 — — P e o — —|— — | | — — -
I I I I I I )
4.6 5 1 1 1 1 1 1 1 1 1
0 0 20 40 60 80 100 120 140 160 180 200
R/h
Figure 4. Nondimensional frequencie® Figure 5. Nondimensional frequencie® versus
versus the volume fraction exponent radius to thickness ratig/h.

p (h/L= 0.02, RIL = 20).
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5.3. Buckling analysis

The nondimensional buckling loads« of FG cylindrical panel with various volume
fraction exponenp are tabulated in Table 3. The obtained resultscarapared with those
reported by Zhao and Liew [10] using the mesh-fre¢hod. The biggest difference of result is
only 2.35% for case of isotropic materipl< 0).

Table 3. Nondimensional buckling loalle (N« =N, .R/ (Em.hz)) with the differentvolume

fraction exponenp.

Model N
p=0 p=0.5 p=1 p=2 p=>5 p=10 p=20
Zhao. X et al [10] 1.2768 1.0390 0.9313 0.8366 6474 0.6933 0.6525
[Present] 1.3075 1.0500 0.9369 0.8390 0.7484 0.6982.6608
Difference (%) 2.35 1.05 0.60 0.29 0.27 0.70 1.26

Figures 6 and 7 depict the significant effect af tifferent values of the volume fraction

index () and radius to thickness ratiB/f) on nondimensional buckling loale . According to
this consideration, the down trend of nondimendidneckling load is in generally common

when the volume fraction index and radius to thegdsiratio have an increasing.

Nondimensional buckling load

1.4

130 — — - — -

1.2

11

1

0.9

0.8

0.7

6

>
o

I

w

N
o

Nondimensional buckling load
w
(5

==0="= FSDT [Present]

Figure 6. Nondimensional buckling Ioamcr versus Figure 7. Nondimensional buckling Ioamcr versus
the volume fraction exponept(L = 10 in.;R=50 radius to thickness ratig/h (p = 0.5;L = 0.2m;
in.; 6= 0.2 rad). R=1m 6= 0.2 rad).

The first four buckling modes of the panel wige 50 in. are depicted in Figure 8 which
reveal that panel curvature has a significant erfze on the buckling mode.
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Figure 8. The first four buckling mode shapes.

6. CONCLUSION

This paper deals with the analytical solutions iending, buckling and free vibration
analysis of simply supported FG cylindrical parighsed on the first-order shear deformation
theory, the equations of motion are derived frormHt@n’s principle.

A series of comparisons and parametric studies tmepen performed to verify the
validity of the analytical solutions and to examiegious parameters. Hope that the presented
analytical solutions could be useful referencegHerfuture researches.
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