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ABSTRACT

In this paper, the settling time of closed-loopteys controlled with PID, which is
established by using magnitude and symmetric optirmethods, is analyzed. These methods
have some limitations such as limited frequencydsaaxistence of overshoot and larger settling
time. Thus, our aim is to improve these performarafe¢he closedloop system for a certain class
of transfer functions. The proposed method wiltdsed on a DC motor by simulation. It can be
concluded that the method provides a larger rarigeequency, smaller settling time and no
overshoot.

Keywords. PID controller, magnitude optimum criterion, syeinic optimum criterion, first-
order system, first-order plus integral system.

1. INTRODUCTION

Many PID tuning methods have been developed sirfg#)sl These methods can be
classified into groups: practical approach [1 - djtimal approach [5 - 8]; gain and phase
margin specification based approach [9 - 13] aherst[14 - 18]. However, there have not been
yet any method that concurrently dealing with bitté settling time and the overshoot of the
closed-loop system.

It is known that when plants, having tramsfunctions of first-order, second-order and
third-order systems the magnitude optimum methagthgparameter determinatitbx];, T, and

T, [5 - 8] for the PID controller seems to be onetlef most effective methods, validated in

reality. However, there has been no fundament urdiv to conclude that the magnitude

optimum method is the only one to provide PID colfgr parameters to make the closed-loop
system stable and the settling time short in thesese¢hat the closed-loop system with transfer
function

¢ ()= P00
i 1+ R(s)G(s)
has
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Qz{wDR*

G, (je)| =1} &

in small range of frequency, which is large enough.

A method, proposed in this work, has an approaei tite closed-loop system, obtained as
follows,

1
1+7's

has as smalll” as possible (wherﬂ”’ iIs smaller,Q is larger), which will demonstrate the
conclusion.

G.(s)=

(2)

2. PID CONTROLLER DESIGN

2.1. Control of First-Order Systems
Firstly, let's assume that the plant has a fornfirst-order system and a PI controller is
used. Then, the transfer function of the plane@esented as follows

k
G =
() 1+Ts

and the PI controller is
1 k (1+T;s
R(s)=k,| 1+— :—p( )
T;s T;s

Thus, the open-loop transfer function is

6,09 = Ry =0 Tre) @
’ T,s(1+Ts)
and the closed-loop transfer function is
GC(S)Zlfés()s) ) T.T = 1 @
’ 132+T,(1+]s+1
k,k k,k

Since the first-order system (2) with unit gairaiways stable, the steady state error is zero and
the settling time is smaller if the time constanshorter, in this case the two parameﬂq]rand

T, are determined such that the closed-loop trarigfetion (4) has the expected form as (2).
In order to do thatk, and T; are chosen to cancel out a zero by a pole. Theiger= -7, .

This is equivalent to

ESZ"‘T[ 1+i s+l1= OaSSI—i
k k k k T,

p p

or
0=T T, (1+kk)+T kK
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ThusT; =T.

Next, the closed-loop system becomes
1+T;s 1

T4 TS
Eszﬂf} 1+ 1 [s+1
k k k k

G.(s) =

p p

with the selected parameters as above, if the ¢imstant?” satisfies the following equation:

T 1
(1+ T’s)(1+ TIS) = (]_+ Tls)(1+ Ts) zﬁsz +TI ( 1+]<;P7]$+ ]

p

P )

= s°+ s+1
kb k
2 T(1+kk
- 1+(T’+I)s+1”T32={T s2+ (145, )s+1
k k kk
3 L
kk k k
This implies
+
B
k[ T,Ts° +T, (1+k k) s +1] 1L

p
Hence, in the case &f, =7 the biggerkp is chosen, the smaller settling time of closed-

loop system will be. Furthermore, the closed-loggtem is stable and has no overshoot.

Obviously, in comparison to the performance of iiegnitude optimum criterion method,
the proposed PI controller provides a more flexlidad of frequencyCY). When the parameter

k:p is bigger, the frequency ran@ebecomes wider:

klim G.(s) =1, Us

Therefore, the desired settling tirfig,, of closed-loop system can be assigned by choosing
k= TIn20
kT,
which is clearly obtained from its unit step respmn

h(t) =1-¢"" or 0.95= 1-¢ /7'

2.2. Control of Second-Order Systems

When the plant has the form of a second-order syste use a PID controller. The plant model
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and the controller are represented, respectivelioliows

k
- Plant: =
ant: G(s) (1+T;5) (1+ Ts)
- PID controller: R(s) =k, (1+i +TDSJ - k, (1+T,s) (1+ Tps)
T;s T;s

where T, +1, =T, and T, T, =T,T),, it means that whenevel, and 7}, are known we can
obtainT; andT}, . The open-loop system is

O () = RI\G k(L4 T,s) (14 Ts) ke (1+ Tys) ( 1+ Ts)
) R G = e s (T Tys) T (1 ) (34 Ty)

(5)

where
k/ — kaA
v T
1

Thus, if it is chosen thal}, =7, then the transfer function (5) has the same far(8ashown
in the first case

/
¢ ()= Kok (1+T,s)
T,s(1+Tys)

where the parameterf, andk, are replaced by the parametdrg and k;}’j respectively. So,

with the set of parameters in the case7}:=17; and k; arbitrary, the closed-loop transfer
function becomes a first-order system with unitingand the time constant
oL NI T,
Kk kkT,  kk

p
and therefore, the biggéfrp is chosen, the smaller its time constaitwill be. Thus, we have
T,T, _ 1T,

T, T,+71,

T, =T,+Ty, =T,+T, and T}, =

In summary, the Iargekp is optionally selected the smaller the settlimgetiassociated with”’

will be. The assignment of desired settling tithg, for the closed-loop system can be easily
realized with

L _(1,+T,)In20
P kT,

In addition, there is no overshoot in the closeapleystem.

2.3. Extended Method to Integral First-Order Systems
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For the basic control theory of linear systeinis well known that the symmetric optimum
method is applied to find the parameté;;s T, and T}, of the PID controller

1
R(s)=Fk | 1+—+T}ys 6
( ) p( TIS D J ( )
for integral first-order systems and integral setorder systems, in order to make the closed-
loop system stable and keep the phase margin lddgerever, the disadvantage of the method is

big overshoot. Although the overshoot can be deecbavith the usage of an input filter, this
causes an additional cost.

The proposed method for determination of Pyameters later will guarantee that the
closed-loop system has no overshoot and arbitrasfl settling time. It is similar to first-order

or second-order systems, the idea of this appr@aalso to find parametek;, T, and T}, of
the PID controller for the integral first-order pta

k
G(s)=—F—— 7
) 3(1+Ts) (7)
such that the closed-loop system has the folloviong:
+
G,(5) = ®)

(1+7T,,,5)(1+ T, )

m m

Consider a closed-loop system, which includes a&egnal first-order system (7) and a PID
controller (6)

R(s) =k, (1+Ti +T)s

s

_k, (1+Tys) (1+ Tys)
= s

with T, +T, =T, andT,T, =1,T,,. The open-loop system is as follows

Kk, \1+T,s)(1+Tys
6, = R)G() = e T L) i)
T,s*(1+Ts)
Thus, if T, =T thenT, =T, +T and the closed-loop system is
Gyls) __ Hk (1+Ts)

G = =
-(6) 1+G,(s) (T, +T)s*+kk, (1+Tys)

So, the closed-loop system will be the same asekpected form (8) if there the following
equation must be satisfied

kk, (1+T,s) ~ 1+Ts
> = : , Us
(T, +T)s* +kk, (1+Tys)  (1+T,,8)(1+7T,,,9)

m. m

o kk, (1+T,8) (14 T,48) (14 T,,8) = | (T, + T) s> + ik, (1+ Ts) | (2 Tps) , Os
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+
. Ty (T, 4T, ) + T, T, = T, + A
Kk,
TA +Tv’€ = TA +T;7L1+T;n2
T,+T)T
melT;n ZTA = M
Kk,
+
TmleZ = TA d
o Kk, T _T,+T
- T; — Tml +T;n2 - ml-m2 kkp
T, +T)T, T, =T.=T ,+T
Tmle TA :( A ) t A t ml m2

kk

p

This implies that
_T,+T _T+T  +T ,

- ml
P kT T kT T

ml-m2 mltm2

T, =T, +T =T +T ,+T 9)

ml m2
T - TATB — (Tml +me2)T
P T +T ,+T

ml m2

It can be seen that with the above equatidhis, and 7, , are freely chosen. The expected
transfer function (8) becomes

€)= ( 1+(T,

ml + TmZ)S

1+ Tmls) (1+ Tmzs)
Thus, with an addition of an input filter as illcesied in Fig.1:
1

1+(T +T;n2)8

ml

M(s) =

to obtain the closed-loop system:
1

(1+ T;nls) (1+ T;n ZS)

G.(s)M(s) =

we always can choosg ;and 7, , such that this closed-loop system has a setiing ¥, as
desired. Obviously, there are two possible commnatof time constantd, , and 7, ,. The

m

first case is T =1 , =1, and the second
oneisT #T

1 2* Input PID Controlled
m. m ' fllter _' Object
Now some steps, about how to choose these -

time constants such that the desired settling
time can be achieved, will kehown. Firstly,  Figure 1. Control with PID and input filter.

v
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let's consider the case one. With the usage oftifiiar as shown in Fig. 1, the closed-loop
transfer function is as follows

1

G (s)=——
c(S) (1+Tm3)2

So, the unit step response is

h(t) = 1_ e_t/Tm — i e_t/Tm
Tm

Thus, the desired settling tin¥,, will be the solution to the following equation

¢+ Lot _0,05= 0
Tm

Letz =Ty, /T . Then

f(z)=e"(1+2)—0.05= C (10)
As z=0, f(0)=0.95 and when x = it is obtained f(«)=-0.05. In addition,
f'(z) =—e"2 < 0,0z > 0. That means there must be a unique solution tetuation (10).
The solution is approximately equal to 4.7439. Henc
= = :—1—'5%
ml m2 m 47439
Then, the PID parameters are determined from Bg. (9
For the second case, the closed-loop system wptlt fiiter is
1
G,(s)=
(1+ T;nls) (1+ Tm ZS)
Without loss of generality, let,,, =k,T,,, where 0<%, <1. Doing the same procedure as the
first case, the following equation is obtained

(11)

_t/T;n,l —_— _t/,I;rr,Z
T;nl T;n 26 _ 005: O (12)
T;nl - Tm 2

Obviously, the expected settling time will be theluson to the equation (12). Let

z =T, /T, ,, then substitute it and, ; into the equation (12) to have
—zlk, _ _-=
f(z,k,) :ksek—e—o.OS: Q (13)

S

It can be easily verified that
f(0,k,)=0.95,f 6o k, - 0.0'and ' (z,k,) <O.

This implies the equation (13) must have only arlat®n with respect td:,. The Tab. 1 shows
solutions for some values éf .

Table 1. Solution with respect té, .

k.| 0.01| 0.3 0.5 0.7 0.99
. | 3.005|3.352| 3.6761| 4.067| 4.7202
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Thus,

T.,= T5i’/° andT =k, h (14)
z z

Hence, given a desired settling time, first we havehoosek,, then time constant¥’ ; and
T, ,are determined by using Eq. 14, and finally the Pdbameters are calculated from Eq. 9. It

m

can be concluded that &s — 1 thenz™ — 4.7438. Thus, the second case becomes the first case.

3. SIMULATION RESULTS

3.1. DC Motor Speed Control

Given a speed transfer function of a DC matofollows [19]
k
1+Ts
where k£ =100, T =1.956§&, the input is the current applied to the DC matod the output is
the speed of the rotor. The | controller paramisteletermined by using the magnitude optimum
method is T, =2kT =391.4, whereas the proposed method provides values Her Rl

controller asT; =T =1.956¢ and k, =0.02 (k, =0.1 for the second case) which can be

arbitrarily chosen such that the settling time risaller than any expected value. Simulation
results for two cases are shown in Fig. 2 and Fid-or the first case, the reference is a step
function r=0.5 rad/s, but for the second case, the reference isine function
r=0.5sin(0.3 . It can be seen that the proposed method give metter performances in
terms of settling time and overshoot. Especiallyewthe reference signal is a sine function, the
magnitude optimum method failed to keep the stghdlihd other performances of the close-loop
system.

G(s) =

The speed of rotor The speed of rotor

.........

rad/s

--=-Magnitude optimum method
— Proposed method
—— Setpoint signal

— Magnitude optimumj
--= Proposed method

. — Reference signal
| | | | [

I I I ~ ‘ I I
10 15 20 25 O'50 5 10

seconds seconds
Figure 2. Responses to a step function. Figure 3. Responses to a sine function.

To compare performances obtained by using diffemegthods, the IAE(integral absolute
error) at a set point change and A& process disturbance change are used [4]s IBE
calculated as follow
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IAE, = fle(t)|dt (15)

wheree is the error between the plant output and th@aiet, ¢, is the initial time, which is the
time of the step changé, is an appropriate final time. For the IAEhe formula is the same as

Eq. (15) but the initial time will be the time ofdisturbance change.

The IAE; and IAE; for the two cases are shown in Tab. 2. A stepudisince with amplitude
of 0.01 is applied to the input of the plant at timee of 30 seconds to measure the JAR
conclusion, the proposed method provides bettefopeances in term of disturbance
compensation and set point change for both cases.

Table 2. IAE and IAE, for the two cases.

Case 1 Case 2
Methods IAE | IAE, | IAE | IAE,
Magnitude Optimum 223| 4265 9254 15.046
Proposed Method 04892 0.9788 05405 0.7585

3.2. DC Rotor Position Control

In this section, the PID controllers are dasid to control the angular position of the rotor
[19] which has transfer function as below

_k
3(1+ Ts)
where the values of parameters are the same dseiprevious section. The PI controller
parameters are chosen by using the symmetric optimathod as follows
1

G(s) =

a=9, T, =0 =17.6_andk = =0.0017
! " kTa
but our method gives
+ +
:M =0.1575,1, =7 ,+T, ,+T= 2.8
g kTmleZ /
T .+T ,|T
b Tt )T 0.5893
Tml +T;7L2 +T

where the desired settling tinig,, = 2seconds and’ ; =7 , =0.4216 For the second case,

if £, =0.5 and T, =2, then T ,=0.5441 and T, =0.2720 Thus, k, =37.472¢
T,=2.772€andT, = 0.5759

For zero overshoot, an input filtedM (s) is used to cancel the zero of the close-loop

system out. The two proposed PID controllers prewinilar performances as shown in Fig. 4.
The results show that the proposed method givdasribygerformances, such as smaller settling

time as desired. When parametédl’s, and 7, , increase the settling time is larger but the
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overshoot is smaller and vice versa. The JABd IAE; are shown in Tab. 3, where a step
disturbance with amplitude of 0.01 is applied te ihput of the plant at the time of 70 seconds
to measure the IAEAgain, the IAE and IAE; proved thathe proposed method gives much
better performance than the symmetric optimum ntetho

The angular position of rotor

===+ Symmetric optimum
1l - - - 4 - _| = Proposed method (MR
- Setpoint signal

I I I
I I I
I I I
| T
I ,.’ I I I
JRN S T
I R4 I I I I
| R4 | | | |
| 4 | | | |
83 Ty T
o I ;! I I I I
I DA I I I I
XA I I I I
] 1 T
, I
I
I

- 1 1
0 10 20 30 40 50 60 70
seconds

Figure 4. Responses to a step function.

Table 3. IAE and |IAE,.

Methods Performance
IAE IAE 4

Symmetric Optimum 24.66 104.9

Proposed Method 0.7858  0.208

4. CONCLUSIONSAND FUTURE WORKS

In the work, a PID design method with desissdtling time is proposed for plants with
transfer functions of the following types: firstder system, second-order system and integral
first-order system. The method provides betterguerénces than both the magnitude optimum
method and the symmetric optimum method in the esafisovershoot and settling time. In
addition, the settling time can be achieved as @rgefor a larger frequency band. Some
examples for DC motor control are used to illustitiie method.

Future works will focus on robustness, effeatanodel error and other types of transfer
functions, may be higher-order system with timeagel
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