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ABSTRACT 

In this paper, the settling time of closed-loop systems controlled with PID, which is 
established by using magnitude and symmetric optimum methods, is analyzed. These methods 
have some limitations such as limited frequency bands, existence of overshoot and larger settling 
time. Thus, our aim is to improve these performances of the closedloop system for a certain class 
of transfer functions. The proposed method will be tested on a DC motor by simulation. It can be 
concluded that the method provides a larger range of frequency, smaller settling time and no 
overshoot.   

Keywords: PID controller, magnitude optimum criterion, symmetric optimum criterion, first-
order system, first-order plus integral system. 

1. INTRODUCTION 

Many PID tuning methods have been developed since 1940s. These methods can be 
classified into groups: practical approach [1 - 4]; optimal approach [5 - 8]; gain and phase 
margin specification based approach [9 - 13] and others [14 - 18]. However, there have not been 
yet any method that concurrently dealing with both the settling time and the overshoot of the 
closed-loop system. 

        It is known that when plants, having transfer functions of first-order, second-order and 
third-order systems the magnitude optimum method based parameter determination ,   p Ik T and 

DT  [5 - 8] for the PID controller seems to be one of the most effective methods, validated in 

reality. However, there has been no fundament until now to conclude that the magnitude 
optimum method is the only one to provide PID controller parameters to make the closed-loop 
system stable and the settling time short in the sense that the closed-loop system with transfer 
function 
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in small range of frequency, which is large enough. 

A method, proposed in this work, has an approach that the closed-loop system, obtained as 
follows,  
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has as small /T as possible (when /T is smaller, Ω is larger), which will demonstrate the 
conclusion. 

2. PID CONTROLLER DESIGN 

2.1. Control of First-Order Systems 

Firstly, let’s assume that the plant has a form of first-order system and a PI controller is 
used. Then, the transfer function of the plant is represented as follows 
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and the PI controller is 
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Thus, the open-loop transfer function is 
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and the closed-loop transfer function is 
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Since the first-order system (2) with unit gain is always stable, the steady state error is zero and 
the settling time is smaller if the time constant is shorter, in this case the two parameters pk and 

IT  are determined such that the closed-loop transfer function (4) has the expected form as (2). 

In order to do that, pk and IT  are chosen to cancel out a zero by a pole. The zero is 1= − Is T . 

This is equivalent to 
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Thus .=IT T  

Next, the closed-loop system becomes 
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with the selected parameters as above, if the time constant /T satisfies the following equation: 
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This implies 
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Hence, in the case of =IT T  the bigger pk  is chosen, the smaller settling time of closed-

loop system will be. Furthermore, the closed-loop system is stable and has no overshoot. 

Obviously, in comparison to the performance of the magnitude optimum criterion method, 
the proposed PI controller provides a more flexible band of frequency (Ω). When the parameter 

pk is bigger, the frequency range Ω becomes wider: 

 lim ( ) 1,  
→∞

= ∀
p

c
k
G s s  

Therefore, the desired settling time 5%T of closed-loop system can be assigned by choosing 
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which is clearly obtained from its unit step response 
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2.2. Control of Second-Order Systems 

When the plant has the form of a second-order system, we use a PID controller. The plant model 
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and the controller are represented, respectively, as follows 

− Plant: ( )( )1 2
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=
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k
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− PID controller: 
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where + =A B IT T T  and =A B I DT T TT , it means that whenever AT  and BT are known we can 

obtain IT  and DT . The open-loop system is 
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where 
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Thus, if it is chosen that 2=BT T  then the transfer function (5) has the same form as (3) shown 

in the first case 
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where the parameters IT  and pk  are replaced by the parameters AT  and /
pk , respectively. So, 

with the set of parameters in the case 1: 1=AT T  and /
pk  arbitrary, the closed-loop transfer 

function becomes a first-order system with unity gain and the time constant 
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and therefore, the bigger pk  is chosen, the smaller its time constant /T  will be. Thus, we have 
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In summary, the larger pk  is optionally selected the smaller the settling time associated with /T  

will be. The assignment of desired settling time 5%T  for the closed-loop system can be easily 

realized with 
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In addition, there is no overshoot in the closed-loop system. 

2.3. Extended Method to Integral First-Order Systems 
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      For the basic control theory of linear systems, it is well known that the symmetric optimum 
method is applied to find the parameters ,  p Ik T  and DT  of the PID controller  
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for integral first-order systems and integral second-order systems, in order to make the closed-
loop system stable and keep the phase margin larger. However, the disadvantage of the method is 
big overshoot. Although the overshoot can be decreased with the usage of an input filter, this 
causes an additional cost.  

      The proposed method for determination of PID parameters later will guarantee that the 
closed-loop system has no overshoot and arbitrary small settling time. It is similar to first-order 
or second-order systems, the idea of this approach is also to find parameters,  p Ik T  and DT  of 

the PID controller for the integral first-order plant 
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such that the closed-loop system has the following form: 
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Consider a closed-loop system, which includes an integral first-order system (7) and a PID 
controller (6) 
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with + =A B IT T T  and =A B I DT T TT . The open-loop system is as follows  
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Thus, if =BT T  then = +I AT T T  and the closed-loop system is 
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So, the closed-loop system will be the same as the expected form (8) if there the following 
equation must be satisfied 
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Controlled 
Object 

PID  Input 
filter 

 Figure 1. Control with PID and input filter. 
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This implies that 
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It can be seen that with the above equations, 1 mT and 2mT  are freely chosen. The expected 

transfer function (8) becomes 
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Thus, with an addition of an input filter as illustrated in Fig.1: 
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to obtain the closed-loop system: 
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we always can choose 1mT and 2mT  such that this closed-loop system has a settling time 5%T  as 

desired. Obviously, there are two possible combinations of time constants 1mT  and 2.mT  The 

first case is  1 2= =m m mT T T  and the second 

one is 1 2≠m mT T . 

Now some steps, about how to choose these 
time constants such that the desired settling 
time can be achieved, will be shown. Firstly, 
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let’s consider the case one. With the usage of input filter as shown in Fig. 1, the closed-loop 
transfer function is as follows 
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So, the unit step response is 
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Thus, the desired settling time 5%T will be the solution to the following equation 
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Let 5%= mx T T . Then 

 ( ) (1 ) 0.05 0−= + − =xf x e x  (10) 

As 0,  (0) 0.95= =x f  and when = ∞x  it is obtained  ( ) 0.05.∞ = −f  In addition, 
/ ( ) 0, 0.−= − < ∀ >xf x e x x  That means there must be a unique solution to the equation (10). 

The solution is approximately equal to 4.7439. Hence, 
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Then, the PID parameters are determined from Eq. (9). 

For the second case, the closed-loop system with input filter is 
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Without loss of generality, let 1 2m s mT k T=  where 0 1.sk< <  Doing the same procedure as the 
first case, the following equation is obtained 
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Obviously, the expected settling time will be the solution to the equation (12). Let 

5% 2= mx T T , then substitute it and 1mT  into the equation (12) to have 
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It can be easily verified that 

 (0, ) 0.95,  ( , ) 0.05= ∞ = −s sf k f k  and / ( , ) 0<sf x k . 

This implies the equation (13) must have only one solution with respect to .sk  The Tab. 1 shows 

solutions for some values of sk . 

Table 1. Solution with respect to sk . 

sk  0.01 0.3 0.5 0.7 0.99 
*x   3.005 3.352 3.6761 4.067 4.7202 



 
 

Nguyen Doan Phuoc, Nguyen Hoai Nam 
 

364 

Thus, 

 5%
2 *
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x
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T
T k

x
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Hence, given a desired settling time, first we have to choose sk , then time constants 1mT  and 

2mT are determined by using Eq. 14, and finally the PID parameters are calculated from Eq. 9. It 

can be concluded that as 1→sk  then * 4.7439→x . Thus, the second case becomes the first case. 

3. SIMULATION RESULTS 

3.1. DC Motor Speed Control 

      Given a speed transfer function of a DC motor as follows [19] 

 ( )
1

=
+
k

G s
Ts

 

where 100=k , 1.9568=T , the input is the current applied to the DC motor and the output is 
the speed of the rotor. The I controller parameter is determined by using the magnitude optimum 
method is 2 391.4= =IT kT , whereas the proposed method provides values for the PI 

controller as 1.9568= =IT T  and 0.02=pk  ( 0.1=pk  for the second case) which can be 

arbitrarily chosen such that the settling time is smaller than any expected value. Simulation 
results for two cases are shown in Fig. 2 and Fig. 3. For the first case, the reference is a step 
function 0.5=r  rad/s, but for the second case, the reference is a sine function 

0.5sin(0.3 )=r t . It can be seen that the proposed method gives much better performances in 
terms of settling time and overshoot. Especially, when the reference signal is a sine function, the 
magnitude optimum method failed to keep the stability and other performances of the close-loop 
system. 

 

 

 

 

 

 

 

 
 

 

 

 

To compare performances obtained by using different methods, the IAEs (integral absolute 
error) at a set point change and IAEd at process disturbance change are used [4]. IAEs is 
calculated as follow 
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Figure 2. Responses to a step function. 
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Figure 3. Responses to a sine function. 
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                                                   IAE ( )
f

i

t

s
t

e t dt∫=                                                       (15) 

where e  is the error between the plant output and the set point, it  is the initial time, which is the 

time of the step change, ft is an appropriate final time. For the IAEd, the formula is the same as 

Eq. (15) but the initial time will be the time of a disturbance change. 

The IAEs and IAEd for the two cases are shown in Tab. 2. A step disturbance with amplitude 
of 0.01 is applied to the input of the plant at the time of 30 seconds to measure the IAEd. In 
conclusion, the proposed method provides better performances in term of disturbance 
compensation and set point change for both cases. 

Table 2. IAE and IAEd for the two cases. 

Methods 
Case 1 Case 2 

IAE IAEd IAE IAEd 

Magnitude Optimum 2.23 4.265 9.254 15.046 
Proposed Method 0.4892 0.9788 0.5405 0.7585 

3.2. DC Rotor Position Control 

      In this section, the PID controllers are designed to control the angular position of the rotor 
[19] which has transfer function as below 

 ( )( )
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=
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k

G s
s Ts

  

where the values of parameters are the same as in the previous section. The PI controller 
parameters are chosen by using the symmetric optimum method as follows 
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but our method gives 
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where the desired settling time 5% 2=T seconds and 1 2 0.4216.= =m mT T  For the second case, 

if 0.5=sk  and 5% 2=T , then 2 0.5441=mT  and 1 0.2720.=mT  Thus, 37.4724=pk , 

=2.7729IT  and  0.5759.=DT  

For zero overshoot, an input filter  ( ) M s  is used to cancel the zero of the close-loop 
system out. The two proposed PID controllers provide similar performances as shown in Fig.  4. 
The results show that the proposed method gives better performances, such as smaller settling 
time as desired. When parameters 1mT  and 2mT  increase the settling time is larger but the 
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overshoot is smaller and vice versa. The IAEs and IAEd are shown in Tab. 3, where a step 
disturbance with amplitude of 0.01 is applied to the input of the plant at the time of 70 seconds 
to measure the IAEd. Again, the IAEs and IAEd proved that the proposed method gives much 
better performance than the symmetric optimum method. 
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Figure 4. Responses to a step function. 

Table 3. IAEs and IAEd. 

Methods Performance 
IAEs IAEd 

Symmetric Optimum 24.66 104.94 
Proposed Method 0.7858 0.2080 

4. CONCLUSIONS AND FUTURE WORKS 

     In the work, a PID design method with desired settling time is proposed for plants with 
transfer functions of the following types: first-order system, second-order system and integral 
first-order system. The method provides better performances than both the magnitude optimum 
method and the symmetric optimum method in the sense of overshoot and settling time. In 
addition, the settling time can be achieved as expected for a larger frequency band. Some 
examples for DC motor control are used to illustrate the method. 

     Future works will focus on robustness, effects of model error and other types of transfer 
functions, may be higher-order system with time delay. 
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