Vietnam Journal of Science and Technology 55 (5) (2017) 557-571
DOI: 10.15625/2525-2518/55/5/8582

A DATA-DRIVEN FRAMEWORK FOR REMAINING USEFUL
LIFE ESTIMATION

Nguyen Dinh Hoa

Posts and Tel ecommunications I nstitute of Technology, 122 Hoang Quoc Viet K.,
Cau Giay Dist., Ha Noi, Viet Nam

Email: hoand@ptit.edu.vn

Received: 2 August 2016; Accepted for publicatiorpril 2017

ABSTRACT

Remaining useful life (RUL)estimation is one ofthe most commontasks in the field of
prognostics andstructuralhealth management. The aim ofthis research ito estmate the
remaining useful life of an unspecified complexteys using somedata-driven approaches.fie
approaches arsutable for problems in which alatalibrary of complete runs of asystem is
available. Given anon-complete run of the system,the RUL can bepredicted using these
approaches. Three main Rlgirediction algorithms, which covercentralized data processing,
decentralize dataprocessing, anth-between, areintroduced andevaluated usingthe dateof
PHM'08 Challenge Problem. Theethods involve the use of someother dataprocessing
tedniques including wavelets denoise andimilarity searchExperiment resuts showthatall
of the approaches areffective in performing RULprediction.

Keywords. Remaining useful life, prognosistructuralhealth management, wavelets denoise,
similarity search, principatomponent analysis.

1. INTRODUCTION

Remaining useful life (RULEstimation is one ofthe most common studies thefield of
prognostics andtructuralhealth management. The aim of RUL prognosis i® estimate the
RUL of a system, given alort historic measurement, usingeither a prediction model or a
data-driven technique. It helps provide aracknowledgment about theworking time of the
system sdhatappropriate maintenanceor replacement actions may besdceduled prior to the
failure ofthe system. Theorediction accuracy plays ammportantrole inreducing unnecessary
maintenance, such as earlyreplacement of components, or production downtime due to
unexpeded machine failures [1]JRUL of one system otomponents can beestimated either
directly by using amultivariatematching process omdirecly by damagestimation followed
by extrapolation of damage progressid@]. Definitions of bothdamage and a system failure
criterion are main obstacleghat prevent the latterapproach from being used widely in all
problemsdespite its ability to align with engineeringmatters.Directed approaches for RUL
prognosis relate to data-driven techniques, which are based omthe aailability of past
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obsavationsto estimate the RUL of a systenat thecurrent run. However, a dynamic system
canonly be observethdiredly by usingdatain time series ofeatures extracted from available
measurement processes such demperature, vibrations, pressureetc. Thisleadsto thefact
that thereliability of the predictions depends ortwo main factors: the accuacy of the
gathered data (how closelythe datadescribethe working statesof a system) and the
appropriatenessof the prediction methods appliedto thegiven datain agiven condition. The
avail ability of run-to-failure dataplays animportantrole in data-driven prognosis. However,
there arenot many publicdata epositories thatprovide avail able run-to-failure data toenable

a comparative analysis of various prognosiigorithms. This explains whythere are not many
data-driven tedhniques developed for RULestimation so far. In circumstances where
runto-failure data are provided,datadriven tedniques are good sdutions for RUL
estmation. That leadsto a needto develop a reliabledata-driven framework for RUL
estimation.

As one branch of general prognosisthods, RUL prediction algorithms can beroughly
classifiedinto two categaies: model basegrediction and data-driven basedprediction. In
data-driven prediction methodspastdataareexploited to build a library ofcomplete runs or
a library of systenttineraries. Then,prediction techniques are appliedo estimatethe RUL of
the system. Model basegstimation methodgend torely ona degradation model ofthe
system, based on which RULéstimated by usingpredefined failure criteria. Generally,the
differencebetween thesetwo types of RUL prognosis isiot very clear. Most ofhe prediction
algorithms introduced in literature are thecombination of the two methods.

Thanksto a wide range ofpplications, model-baseRUL prediction algorithm attract
a lot of attention.Xue et al. [3] introduce an instance-based model evaluate the RUL of
aircraft engines. Irthismethod, a four-stepalgorithm mainly based osimilarity functions is
applied. They focuson using instances ofhe past runsthat are similarto the current
operation to create an ensemble of local modelShese four stepeetrieve similar instances
from the database evaluating similar measurebetween the testsample andhe instances
using the truncatedjeneralized Belfunction, creating local models usinghe mostsimilar
instances, andggregating outputsof local models using a locallyeighted model.Yan et al.
[4] develop a prognostimethod to deted systemdegradation for RUL estimation. Logistic
regressionwith or without enough historicadatausing maximum likelihood techniques is
usedto classifythemachine runningonditionsfrom normalto falure. Theperformance ofhe
machine isestimated at each cycle of life, anthen a ARMA model is usedo predict the
tendency of future performance based oprevious assessment resuts. Conseguently, the
number of remaining life cycleso failure is derived. Shao and Nezy5] propose a
progression-basegrediction of RUL usingdifferent methods in different bearing running
stages. Thiglgorithm includes online modeling dherunningstateusing neurahetworks and
logic rules. It allows amulti-step prediction, which helpsthe approachadapt tochanges in
environment. Liao et al. [6] developtwo models for RULestimation: the proportional hazards
model andthe logistc regression model. These modelsluate the multiple degradation
features of sensodata comparedo specificreliabili ty indices ofthe system in ordeto predict
its RUL. Kiddy [7] usesthe Monte Carlo simulation to create canservative predictions based
on known component reliability to estmate the RUL of the component. Sahaet al. [8]
develop an RUL prediction model using a relevanaedor machine based on a Bayesjart
of a kernel- based regressitedhnique, or asupport vector machine. The model ihen used
in a particle filter framework. The RUL isstimated in the form of a probability density
function underthe process oftatistical estimation of the noise andoperational conditions.

558



A data-driven framework for remaining useful life estimation

Pattipatiet al. [9] predict the RUL of the batteryusing a movingaverage 8pport Vedor
Machine Regression falifferent thresholds on capacity fadeand power fade.

In addition to model basegrediction, manydata-driven tedhniques for RUL estmation
have been developed and appliedolve alot of real problems. Cheng afdit [10] combine
the Multivariate StateEstimation Technique (MSET)with life cycle damage prediction to
produce amethod for RUL estimation. In this method, MSET algorithms monitor the
relationshp between actual dataandthe expeded data,which is basedan thehistoric data
coveringcomplete runs ofthe system. Based athis relationship, the cri- terion of thefailure
of the system isset, based on which RUL can lestimated. Byington et al. [11] present a
data-driven method using a neurometwork to predict the RUL. In this method, the heath
state of the system is modeledising specific data features, which are usedwithin a
classfication environment to determine the trueheath state of the monitored system. A
prognostidunction is usedto store the classiication and fusednformation during the whole
operating life of the systemto estimate theremaining useful life under some specified bounds.
This method mainly relies orfault detection and failureprediction beyondthe point of the
fault. Kavanagtet al. [12] develop atwo-stage RUL estimation algorithm. First, they usethe
envelop analysis for feature extraction, then themutua information for feature subse
sdection. Second,they develop adegradation model andlocate the current position of the
machinein thatmodel. The nearest neighbaassfication algorithm is usedto determine the
RUL of the machine. Lacet al. [13] design atwo-layer neuronnetwork (NN) to predict the
bearing's RUL based ortime{requency features The signad’sfrequencyspedrum and feature
extraction are first analyzed by DFT and PSD. The first layethe network is usedo identify
the bearing as one dhree states: normal unbalancéailure, and other failures. The second
network layer is designed for RUprediction using acontinuous unipolar nonlineafunction.
Liu et al. [14] improvethe efficiency of NNbased prediction method by usingdataclustering.
In their method, the dataare classifiednto small clusters, having simil@tata.The clustering
algorithm being used is fuzzy C-meansData in each clusterthen are usedto train
correspondingNN for prediction. The input datas first judgedto be in one of defined cluster,
thendesired information (systemstate,RUL, ...) ispredicted by corresponding\N.

In summary, RULprediction based on knowledgaboutdamage progressio@ad failure
criteriais more commonly used in research fields. Howedaegto difficulties in determining
the definitions of the damage othe system as well athe stopping criterion, this prediction
method is not very useful in some ofhe problemsthat require dataanalysis on available
run-to-failure data.ln many dynamic engineering systertw faults that shorten thelife time
of the system aranot alwaysthe same in all cases. This leatdsvariations in determining the
damagepropagation as well aghe stoppingcondition of thesystem. Inthis case modifications
applied on someéatadriven prognosistechnigues can be don¢o solve specific problems. In
this research,three data-driven RUL prediction approaches arénvestigated based on
similarity searchalgorithms covering both centralized and decentralized data processing.
Performances of atlhree proposed methods are evaluated using a PHM Challengdata.The
experiments show that those algorithms, with suficient modifications, are usefulfor RUL
estimation inreal problems.

The remainder of the paper is organized as follolwe problem of RUL estimation is
formulated in Section 2. Section 3 addresses timergé framework for RUL estimation, that
includes three main approaches, such as centrghzszbssing, decentralized processing, and
hierarchical processing. All three methods arewated using the dataset from the Prognostics
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and Health Management 2008 Challenge. Experimeesailts and discussion are presented in
Section 4. Conclusions are provided in Section 5.

2. PROBLEM FORMULATION

The system dynamics unddre consideration are usually very complex. In moséses,
thereis no closed-form physical models availabledoed prognosis. Fothe problem of RUL
estimation, data-driven techniques mainly rely onthe aailability of run-to-failure data.
Assumethat the dataonsists omeasurements collected from N sensorsglistributed widely in
the system The system here can le¢gher a standaloneengineering machine or a large-scale
multi-model system. The sensors, which alenoted by S;,, n = 1...N, measurethe
outputsof the systemto build up responssufaces andoperation margins. Thes@utputsin
time series describéhe characteristics of the system, e.g.they can bethe measurements of
the temperature, vibrations, pressuregtc. The number antypes of sensors required as well as
the locations of these sensorsare chosen suclhat thesystemhealth statecan beestimated
accurately based onthe datacolleded. Runto-failure data of the system consists dfime
series recorded from startingpoint, which is assumetb be in a normal workingondition
of the system,until the system goes down due thefaults occurring sametime during the
work and developed immagnitude causingthe system failure. Usinghe disaete time

representation, the data collected by serijgr can be expressed {SJ(T_D,...,S,Q}. The

suwersaipt “0” represents the end oflifetime of the system, andhe systemlifetime is T.
Assumethatin the training datasd, there are atotal of M complete runs, each of which

has a life span of T;j In short, the whole training data can berepresented by {S,ﬁ’}
n=1,....N, t = —(Tj —-1),...,0, and j =1,...,M. Based orthe information presented
in the training data set composed ofturrent systemmeasuements from N sensas for a

duration T, {S;(TCJ'TR_Z),S;(TCJ'TR_”,...,S;(TR‘D}, n=1,...,N, our goal isesimate the
RUL TR accurately.

With the advances of sensingdnology, a large number of sensors candsployed on
modern systemslraditiona centralized processing whicltogoerates all these sasars can be
very computationally complex and resource consuming. Experiertedsus that notall the
sensors provideelevant information regardingthe systemhealth state.Furthermore, some
sensors may providedundantnformation. Onthecontrary, some sensors asensitive to the
systemdegradation, andtheir datavary accordinglyto theoccurrence othe faults. Prognosis
algorithms should be ableto recognize andextract the positive contributions of the
measurements from these sensors andacilitate decentralized processing.

3. GENERAL FRAMEWORK

Based orthe avail abili ty of the daterom the historiccomplete runs as training data, given
the current incomplete runs as testing data, in generdl,is possibleto directly diagnosethe
similarities between test and training datasets.Similarity searching is areffedive data
processingednique to solvethis kind of problem. Data-driven tedhniques based orsimil arity
search can beentralized dataprocessing, fully decentralized dataprocessing, om-between,
so called hierarchicallata processing. They incur different computational complexity and
communication cost.
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In the centralized structure,all datafrom N sensors are processatla centra unit. K
features describingthe systemhealth state can be extracted from N sensdiss stage is
so-calledfeature extraction. The number of dimensions @ghe datas, then, transformed from
N to K. Similarity searching camhenbe applied individually on Kndependent features. The
fusion stage fusethe RUL estimates from these K features to provide the final decision
regarding systems remaining useful life.

In the fully decentralized structure, thesensorsdection is conducted at thefirst stage
based onthe training data toremove allthe sensorsthat useless forthe RUL prediction.
Only K mostrelevant sensors aré&ept for RUL estimation. The similarity searchagorithm
is applied each local sensor, providingegimates of the RUL of the system. The RUL fusion
stage combineshese answersto produceafinal RUL estimate.

Hierarchicaldata processing is atructurebetween the two extreme casesdesaibed
above. N sensors are first classifiatb K groups Each sensor grougontains sensors having
similar characteristics or highly correlated to each other. Importantfeatures are extracted
from each sensor group, basedvamch system RUL can bestimated. Theseestimates from
different sensor groups are then fusedurther improve the estimation accuracy.

In the following sections, we first briefly describéhe simil arity search approachthen the
detail s of three RUL estimation methods are provided.

3.1. Similarity search

Similarity search has attracted a lot of reseattdnton recently. A brief description of the
technique of “similarity search” in time seriesalatas done by Goldig al. [15]. This method
has been developed and successfully applied to mpplycations such as economics [16, 17],
video and image processing [18] and many other-didtan techniques [19. 20]. There are
various ways to conduct similarity search dependm@ow the query sequence is compared with
the database sequences [19]. The most common w@agaesnpare the entire time series, known as
full comparison, by using appropriate distance fioms. In this method, all time series matching
with the full length of the query are retrieved. oilmer approach is subsequence matching, in
which any time series in the database that masctvsequence of the query is selected. The length
of the subsequence is defined depending on regapptications, and the matching sequences
need not to be in a common time frame. A differemdthod from subsequence matching is
interval-focused similarity search, in which thmdi slots as well as the predefined time intervals
relevant for matching are fixed [19].

The similarity between two sequences can be meddyran appropriate distance function,
such as Euclidean distance, Dynamic Time Warpimgy$dn’'s correlation coefficient, angular
separation, etc. The Euclidean distance is addptts research due to its simplicity. Givén
features/sensors extracted/selected from the tiaitata, the similarity search algorithm can be
conducted as follows. For featufg , we have past complete riinof the system contained in the

training data se{ t;g;;_kl), ...,ft‘}am_k} of length T, and current generalized non-complete iun

. —(Tc.+Tgr.—1 —(Tgr.—1 .
in the test data se{tftes(tif R ). ...,ftes(t’:c‘ )} of lengthT¢,. To estimate the RUIIg, , we

need to search for a portion of the past run thété most similar to the current run. The actual
, ~(T¢;~1 , .
data set of the test unitis {ftes(tig ), ...,ft%st_k}. The last time sample of test uniis moved

forward fromt = —(T; — 1) towardst = 0 and the Euclidean distance between the overlap
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parts is calculated. For a fair comparison, thelaiity between these two portions is measured by
the average distance per time sample,

Q
.. 1 2
L — -(x-1) _ —(x—t-1) . )
Dk _a Z( test.k  Jtraink ) = _(T] —1),...,0

x=1

wheret is the time index in cycles, indicating the pasitiof the portion of training unit to be
compared,Q =t +T; , andQ < T, is the number of data samples of the overlap @ustiT,,

andT; are the lengths of test unitand training unitj, respectively. Time index corresponding

to the minimum value oD,i’ij indicates that the portion of training data frenT; — 1) to t is
the most similar to test data. Then, the numbereofaining life cycles front to the end of
training unit denotes the best estimate of RUL Basetraining unitj,

o . tij
Ty, = —argming Dy

with M training units in the data set, this proceduresit$ally providesM samples of RUL
estimates based on tk&feature. Proper fusion and estimation schemes toeleel adopted.

3.2. Centralized processing

In centralized processing, all measurements areepsed at a central unit. For data with a
high dimension, where graphical representatioroisavailable, patterns in data can be hard to
find. Principal component analysis (PCA) [21] ip@werful tool for analyzing such data. PCA
helps analyze the structure by highlighting theéquas in data. The most important advantage of
PCA is that once these patterns are identifiechéndata, the data can be compressed to lower
dimensions without much loss of information.

The principal components (PCs) are defined by #mogponal linear transformation of data
vector X. The PCA uses covariance matrix to deternfinenost significant patterns of training
data. In fact, the limitation of this method is ensitivity of the PCs to the measurement units
used for each element &f. To overcome this disadvantage, researchers tamsktPCA based on
correlation matrix [21]. However, that is not these for the being proposed method because the
main purpose of the algorithm is to find the pattef the training data and the test data, then we
find the similarity between those data. As londhesPCA is the same for both training data and
test data, the results are still valid. It is shavat there are many ways to decide how many
principal components should be kept in order tooant for most of the variance d&f. In this
research, the value @& is chosen based on the desired percentage ofvatialtion that the
selected PCs contribute, let's say more than 8086. viariance of each PC is presented by its
eigenvalue of the covariance matrix. Then, the irequnumber of PCs is determined by the
number ofK largest eigenvalues that chosen percentage isledee

Ik( 1Ak 0.80
= = 0.80.
/211\11=1/1n -

PCA is usually applied to multi-dimensional datathwindependent and identically
distributed samples to identify a subspace withuced dimensionality containing most
information/variation of the original data. For tberrent RUL estimation problem, each sensor
can be regarded as one dimension and we try taatttre most important subspace of dimension
K from the original dimensio. However, the samples we have for each dimen&nsads are
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in the form of a time series. That means the sasnptedifferent time points may not be
independent or identically distributed. In fachicg the system degrades with time, these time
samples are not of the same distribution. The Bysliegradation usually causes changes in mean
and/or variance of the distributions of time seriesgeneral, it may change the distribution
function itself. In other words, variations in ttime samples indicate the trend of system health
state. PCA is a simple linear operation to lochgesubspace with the most of variations of data.
Moreover, the main objective of PCA is descriptinet inferential, then non-independence does
not seriously affect this purpose. Here, we apMARo time series to locate those dimensions
with large variations. Note that we have to digtilst variations related to system health state and
variations that do not.

As stated above, system degradation may cause &handifferent characteristics of sensor
measurements. Certain data preprocessing, e.gempdata normalization, denoising, etc., is
required before applying PCA.

RUL estimation based on PCA

Given the training dataset, which includes all tine-to-failure data in the past, the system
health state in each run can be derived by conatitgnall sensor measurements of each training
data using PCAK eigenvectors denotin most significant patterns of the training data is
selected to transform the data in both training @t data. By using the same eigenvectors to
transform the data in both training and test uitits,ensured that all of the data is projectedhen
same transformed subspace. Thus, the similarityclsegesults are reliable. After PCA
transformation, there ar€ features in each testing data. Each feakuroduces a set a¥f

—_—

answersT,,’, for the RUL of test dat#, M is the number of training data in the librajyg M.

—

Totally, there arek x M answers for the RUL of each test data/ answersTIy " then are

—

fused by the weighted sum based on the distabfeghat determing’/

R aS below.

M min(D,ij)

)
Zj:l Dij TR_k
_ k
RULLe= min(Dij)
M k
j=t pu

k
The similarity between two data sequences is imherzroportional to the distance between
them. Then, the training data containing the mimsii@ portion to the test datais believed to
produce the closest answer to the actual RUL oftébedata. This is denoted by the distance
min(D,l(]). As a result, the reliability of the answer foetRUL of test datd given by training

data;j is inversely proportional to the distannﬁn(D,ij). In the RUL fusion stage, the final RUL
of the test uniti is the average ok answerskRUL; ;. The final scores based on the correct
answer is used to evaluate the precision of thegeed method.

3.3. Hierarchical processing
In this approachN sensors are divided int§ clusters containing correlated sensors. These
sensor clusters are maximally independent to edoér.oEach sensor cluster produces its own

answer for RUL estimation. The final RUL answedésived by the linear combination of results
provided by those clusters. The PCA algorithm éshibsis of the whole process.
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Consider a linear transformation from Andimension random vectdf € RN with zero
mean and covariance matr to a lowerk; dimension random vectdf € R¥1, K; < N.
Y x1 =A§XK1XNXL, where A is an N x K; transformation matrix whose columns dfg
orthogonal eigenvectors corresponding to the fifstlargest eigenvalues of the covariance
matrix Cy. As discussed abové; is defined by how much information should be Kepin the
original data after the transformation. LétvectorsV,, V,, ..., Vy € R be the rows of the
transformation matrix4. Each vecto,,, so called weighted vector, represents the priojectf
then™ feature of the vectok to the lower dimensional spa@& . Two independent features of
X have maximally separated weighted vectors, while torrelated features have identical
weighted vectors. To divid&y features of the dat¥ into K separated clusters containing
correlated features, we could apply K-means algor{22] using the structure of the rows and
classify these vectors int§ separated group&,. RUL estimation algorithm based on feature
clustering in a hierarchical approach, can be desdras follows.

Step 1: Compute the approximated covariance mafkxof the N-dimensional vectoX.
Step 2: ComputeK; eigenvectors of’y to form matrixA.

Step 3: Form a set ofV row vectorsV,, V,, ..., Vy from the matrixA. Remove all vectors
V, having the norm|V,|| < ¢, (¢ is very small). Update the new vector s&t,{V,, ..., Vy/}€
R¥:. Divide the new vector set intl§ vector clusterss, using K-means algorithm.

Step 4: For each sensor clustéy,, apply the PCA-based centralized RUL estimatiofinic
the local RUL for the test data. Assuming thatiladise sensor clusters are independent to each
other, K local RUL; , estimates o sensor clusters can be linearly combined, i.eraaes, to
provide the finalRUL; of test datai.

3.4. Decentralized processing

In this approach, each individual sensor measurensensed to provide the local RUL
estimation of the test data. These answers ardised to give final RUL prediction. Given a set
of distributed sensors, many of them can be uselémsusefulness of one sensor is presented by
its contribution to the whole system informatioiefe are two main types of useless sensors. The
first one includes those sensors whose data argtaz@nduring the life time of the system or
contain only noises. The second one is those semdarse measurements are highly correlated
with the others. Useless sensor data must be reimosfore any further diagnostics. Mutual
information [23] can be used to distinguish theseless sensors.

3.4.1. Sensor selection based on mutual information

The mutual information between two random variablesisures the dependent information
between them. The higher the mutual informatiore kigher the correlation between two
variables, and vice versa. Mutual information betwéwo random variable§ andY can be
calculated as [23](X;Y) = H(Y) — H(Y|X) = H(X) — H(X|Y), whereH(Y) is the entropy of
random variable’. H(Y) = — [ py(y) log(py(y)) dy, Wherepy(y) is the probability density
function of Y, which can be estimated using histograms, kerBelsplines, or Nearest Neighbors
[24]. The conditional entropy (Y|X) denotes the entropy of variabfewhen the values ok
are given.

HOVIX) = = [ o) [ pris 1) log (prye (1)) dxdy
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The joint entropy between two random variablesind Y is defined in the chain rule [23] as
H(X,Y)=H(X)+ H(Y|X). Then, the mutual information can be calculated/@5Y) =
H(X)+ H(Y) — H(X,Y). We can see thdi(X; X) = H(X). This means mutual information of a
random variable with itself is its entropy, or archbe referred as self-information [23]. The
entropy of one variable presents the informati@aities about the system. This means the feature
having too small self-information is useless.

The conditional mutual information of random vategaX andY given random variabl&
is defined ad (X;Y|Z2) = H(X|Z) — H(X|Y, Z). There are some other chain rules for entropy and
mutual information as  HXy, Xy, .., Xp) =2 HX1Xi—1, Xi—2) o, X1) and
[(X1, Xz, oo Xn3 ¥) = D0y I(XG Y (X1, Xi—g) o, X1)

The feature having “high” mutual information witetremaining feature set is considered to
be dependent on the other features and shouldrbevesl. Based on these consideration, a
sequential backward sensor/feature selection dhgorcan be described in five steps as follows.

Step 1: Start with a full set oV given sensors/featurds= {f;, f>,..., fn }-

Step 2: Calculate the self-informatior{(f,,), of all features. Remove the featurgs
having H(f,) smaller than a predefined small valeieF then hasV features.

Step 3: Calculate the mutual information between eachufeaf, and the set of remaining
features,l, = I(fo; {fmymen})-

Step 4: Calculate the mean of al),, M(I) = %Z,’Yzlln. Calculate the gap between the

biggestI,, and the smallest,, G(I) = maxI, — minl,. If M(I) < G(I), remove the feature
having the highest,,. Update the feature set, return to Step 3.

Step 5: The algorithm stops wheM (I) > G (1), meaning that all the remaining features in
the set are closely dependentM{]) is large (or independent i (I) is small) on each other.
The final feature set ha§ features.

3.4.2. RUL estimation

An RUL estimation algorithm based on similarity mddng is applied on each of K
features/sensors. Depending on how K features deperach other, some fusion techniques can
be applied to provide the final RUL estimation. &ssng that these features are independent, the
simplest way to find the final RUL is to take theeeage value of alk RUL estimates.

4, EXPERIMENTS
4.1. Dataset

In this research, the dataset from the Challengbl®m of the International Conference on
Prognostics and Health Management 2008 [25] is tsegaluate the proposed RUL estimation
algorithms. The dataset consists of multiple maliate time series, which are divided into
training and testing subsets. There are 218 semesded in the training set, also 218 series é th
testing set. All of these series are differenteingth. Each time series is from a different running
instance of the same complex engineered systegri@dfto as a “unit”’), e.g., the data might be
from a fleet of ships of the same type. Each umiits with different degrees of initial wear and
manufacturing variation which is unknown to therusehis wear and variation is considered
normal, i.e., it is not considered a fault conditi®here are three operational settings that have a
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substantial effect on unit performance. Theserggdtare also included in the data. The data is
contaminated with sensor noise. The unit is opsgaibrmally at the start of each time series, and
develops a fault at some point during the serieshe training set, the fault grows in magnitude
until system failure. In the test set, the timdeseends some time prior to system failure. The
objective is to predict the number of remainingragienal cycles before failure in the test set, i.e
the number of operational cycles after the laskctat the unit continues to operate. The data are
provided with 26 columns of numbers, separatedoagss. Each row is a snapshot of data taken
during a single operational cycle, each columndgfarent variable. The original explanation to
the Problem and the dataset can be referred andloaded in [25].

4.2. Evaluation criteria

The score used for evaluating the prediction algors is defined as the exponential penalty
to the prediction error, and the score of whole@atgm is the sum of all scorg® from all RUL
estimations of N test runs:

d; = RUL, — RUL;
g e -1d; <0
o led/10~1,d;, >0

N
B = ZBl
i=1

The key aspect of a prognosis algorithm is to ataildres. It is preferable to have an early
prediction than a late one. The scoring formulkasigmmetric around the true time of failure such
that late predictions are more heavily penalizeshtharly ones. In both cases, the penalty grows
exponentially with increasing error. A perfect gotidn scores zero.

i=1..,N

4.3. Data preprocessing

The dataset is first going through a mean extragbicess, then is denoised. There have
been many signal densoising approaches in thatlitey. Lergaet al. [26] introduce a denoising
method based on a modification of the intersectidnconfident interval rule, which is
complemented by the relative intersection of caariitk intervals length. Magt al. [27] use dual
filtering algorithms for denoising ultrasonic A-scasignals. Their methods are based on
applications of efficient denoising algorithms suabk Wiener filter and discrete wavelet
transform. Signal denoising based on wavelet toansf2] has attracted a lot of attention in
recent. Wavelet transform is preferable to othandforms like Fourier transform or cosine
transform because of its ability to locate the algimultaneously in time and frequency domains.
Input signal is first decomposed using the orth@davavelet basis. The wavelet coefficients are
then suppressed using hard or soft thresholdireg[R]l Finally, the signal is transformed back to
the original domain to provide a “noiseless” vensaj the data.

if ly| >
Hard threshold ruleT (y) = {g Z: :z: Zj

y —sgn(A if |yl =4
0 if lyl<a

where,y is the input data to the thresholding procd4s) is the output data, is the threshold
level. In this research, we implement wavelet demaeiith soft thresholding usimdglencmp and

Soft threshold ruleT (y) = {
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wdencmp functions in the Wavelet Toolbox of MATLAB to estate fitting curves of noisy
signals.

4.4, Procedures and results
4.4.1. Centralized processing with PCA

218 training series are used as input to PCA dlguoriEach training series has its own PCs
corresponding to the eigenvectors and eigenvalfigs approximated covariance matrix. Table
4.1 presents an example of eigenvalues in desagratiter of the approximated covariance
matrix of training series 1. The eigenvalues aretim® same in different training series due to the
different variation of the data resulting from @ifént degradations from one run to the others.
However, there is only one dominant eigenvalue fthmlist of 21 eigenvalues in all training
series. This means there is only one PC is retafkeed result, there is only one feature needgto b
extracted from the original data.

Table 4.1. Eigenvalues sorted in descending order of trainmig 1.

15t eigevalue | 66.713
2N gigavalue | 051103

3 iganalue | 0-35184
4th eigawalue | 0092441

215t eigenvalue 0

The answer for the RUL of each test unit is cateddrom 218 answers of all training units.
Since there is only one PC selected, we do not teeedmbine the results from many different
PCs. The result of PCA method is provided in Tahk

4.4.2. Hierarchical processing with Feature classification

Since there is only one eigenvector selected fta ttansformation, the matriA has only
one column, and the vectovs, V,, ..., Vy are scalars. By dropping out all sensargvhose
V, <&, & =103, seven sensors are eliminated. The final sens&s §& 3, 4, 7, 8,9, 11, 12, 13,
14, 15, 17, 20, 21}. K-means algorithm, K=7, is lgggb to find out correlated sensor groups.
Seven sensor groups are {2, 11, 15}, {3, 4}, {7}.148, 13}, {9, 14}, {17}, {20, 21}. PCA
algorithm is then applied to all seven sensor gsamgparatedly to find seven RUL estimates for
each test series. The final RUL prediction of etash series is the average of all seven answers.
The resulting score of this approach is providediable 4.2.

For this specific problem, the hierarchical apploean help improve the result significantly
from the centralized appoach. The reason can Haiegp as follows. The investigated system is
a dynamic system. The fault causing the systemait@dwn is not the same in every run. As a
result, the system degradation process is diffeirergll training series. High complex faults
happening during one lifetime of the system mayseamnore complicated changes in sensor
measurements than simpler ones. By using only @énRall training series, we cannot fully
investigate the complication in patterns of thead@his leads to the fact that the centralized RUL
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estimation algorithm cannot produce the exact tesidr all test units. In the hierarchical

processing with feature classification, the featse¢ is divided into smaller groups. It helps
provide many multi-dimensional data sets. As altedatailed patterns of the original data can be
further investigated, and the combination of thesmults after clustering can provide a more
accurate prediction.

The advantages of centralized processing over roldcal processing are the smaller
computational time and the less complexity of tge@thm. However, for this specific challenge
problem, hierarchical processing performs bettan ttentralized processing. In many other real
problems, where the training data need more tharP@hto depict the system health state, e.g, the
number of PCs needed to investigate in PCA algorithight be equal to the number of selected
feature groups, the estimation results providethkeytwo processing methods are believed to be
the same. In this case, centralized processingefenable due to its simplicity.

Table 4.2. Comparison among different methods.

M ethods Scae
Centralized processing with PCA 53428

Hierarchical processing with feature classification| 12757

Decentralized processing with feature selection 2767

4.4.3. Decentralized processing with Feature selection

In the given problem, each sensor measurement@ett as one feature. The feature
selection algorithm is applied to find the optimdeature subseF. In this research, mutual
information calculation packet written in Matlabdes by Pengt al. [28] is used. There are
totally five features to be selectefl,= {2, 7, 8, 11, 17}. These features are denoissidgu
wavelets with soft threshold. The RUL estimatiogoaithm using similarity search is used to find
the RUL, from each selected sens§y. The final RUL is the average of all the resuttsi five
selected features. The score of feature selectathad is provided in Table 4.2.

The score of decentralized method is a bit highan the hierarchical method. This is due to
the elimination of many unuseful features. Indelee humber of the final selected features used to
estimate the RUL can effect the final score ofalgmrithm. A larger number of features tends to
improve the precision of the prediction resultswidwger, enlarging the final feature subset leads to
increasing the computational time of the whole atbo. Moreover, dependent features added to
the final set do not produce much improvement.

5. CONCLUSIONS

All methods for RUL prediction proposed in the @®# have been evaluated using the data
provided by PHM2008 competition. The actual renragriife time of the test runs are provided as
a reference to calculate scores for performancéuatan of these methods. However, it is
sensitive to use the scores to evaluate how aqtireglimethod works because in any situation one
approach can produce some very good predictioriddbesme bad results. To be specific, small
number of large errors can dominate in the finarecin this Challenge Problem, some testing
series have very short history, which potentialjuse large prediction errors. All of RUL
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prediction methods introduced in this Research atouse any RUL adjustment algorithm, and
prediction results could be improved significarifigome distribution of the predicted RUL is
exploited. For example, using the distributionha# ictuall RUL can help cut off some too large
values of predicted RUL to a normalized smaller mnerder to reduce the risk. Moreover, late
RUL estimates are judged more heavily than earbson

All three mentioned RUL estimation methods depesal/ily on similarity search algorithm.
The outputs of similarity search can be used inely. Specifically, the similarity searching
algorithm helps find out the most matched data fthenlibrary for the current query based on a
distance function. These distances depend hearith® length of the portions used to compare
between two sequences. Besides, these proposeddseth not fully exploit the domination of
training series which contain the most matchedigomvith the test data among all training data.
This is the key for tuning techniques that can eduto improve the prediction results, such as
fixing the maximum length of the comparison poripohoosing only fixed number of training
series most similar to the test data to estimageRbL, etc. Another matter that should be
discussed is the size of the library of past rithe. larger the library we have, the more samples of
past runs can be used to estimate the RUL of thiertitest data, as a result, the more accurate the
prediction could be. The author believes that thesediction methods with sufficient
modifications can be very useful in solving mangl rgroblems.
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