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ABSTRACT 

In this paper, a functionally graded cantilever beam with an open crack is investigated on 
the base of Timoshenko beam theory; power law of functionally graded material (FGM) and 
taking into account actual position of neutral axis instead of the central one. The open and edge 
crack is modeled by coupled translational and rotational springs stiffness of which is calculated 
by the formulas conducted accordingly to fracture mechanics. Using the frequency equation 
obtained in the framework of the theory natural frequencies of the beam are examined along the 
crack parameters and material properties. This analysis demonstrates that sensitivity of natural 
frequencies of FGM beam to crack is strongly dependent on the material constants of FGM. 

Keywords: FGM, Timoshenko beam; cracked beam, modal analysis;   

1. INTRODUCTION 

Due to advantage properties compared to the laminate composites the functionally graded 
material (FGM) has been intensively studied recently and got wide application in the high-tech 
industries. An overview of the problems for manufacturing, modelling and testing FGM was 
given in [1]. Numerous methods such as the Finite Element Method (FEM) [2]; Spectral 
Element Method (SEM) [3]; Dynamic Stiffness Method (DSM) [4] or Rayleigh-Ritz method [5] 
have been developed for analysis of structures made of FGM. Nevertheless, the analytical 
methods are still the most accurate and efficient for dynamic analysis of functionally graded 
beam-like structures [6-9]. While the most of the aforementioned studies investigated 
undamaged beam, the crack problem in FGM has been studied in [10-11]. The most important 
result of the studies is that a crack in FGM beam can be modeled by an equivalent spring of 
stiffness calculated from the crack depth. Based on the rotational spring model of crack, Yang 
and Chen [12] studied free vibration and buckling of Euler-Bernoulli FGM beam with edge 
cracks. They found that natural frequencies of FGM beam with smaller slenderness and lower 
ratio of the bottom Young’s modulus to the top one are more sensitive to cracks. The transfer 
matrix method was employed by Wei et al. [13] for obtaining frequency equation of FGM beam 
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with arbitrary number of cracks in the form of third-order determinant. This simplifies 
significantly the modal analysis of multiple cracked FGM beam. Aydin [14] has conducted an 
expression for mode shape of FGM beam with multiple cracks and used it for constructing the 
frequency equation in the form of an explicit determinant of third-order also. Forced vibration 
and nonlinear free vibration of cracked FGM beam are investigated in Ref. [15-16]. Based on the 
exponential law of FGM and rotational spring model of crack, Yu and Chu [17] and Banerjee et 
al. [18] have applied the FEM and the Frequency Contour Method (FCM) for detecting a crack 
in Euler-Bernoulli and Timoshenko FGM beams, respectively. Nguyen Tien Khiem and Nguyen 
Ngoc Huyen obtained a condition for uncoupling of longitudinal and bending vibration in FGM 
beam and studied uncoupled flexural vibration of the beam [19].  

In the present paper, an analytical approach in frequency domain is proposed to study free 
vibration of functionally graded Timoshenko beam with an open crack modeled by a pair of 
translational and rotational springs. This is a novelty of present paper in comparison with the 
previous ones where only rotational spring model of crack was adopted. Using the proposed 
model of crack, frequency equation of a cracked cantilever is conducted and used for sensitivity 
analysis of natural frequencies to crack parameters. Numerical results of natural frequencies as 
functions of crack positions and depths are obtained by MATLAB code. 

2. GOVERNING EQUATIONS 

2.1. Model of FGM beam 

Consider a beam of length L, cross-section area hbA ×=  made of FGM with material 
parameters varying along thickness by the power law  
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where E, G and ρ with indexes t and b stand for elasticity, shear modulus and material density at 
the top and bottom respectively; z is ordinate from the central axis at high h/2. Assuming linear 
theory of shear deformation, the displacement fields in the cross-section at x are 

),(),,();,()(),(),,( 000 txwtzxwtxhztxutzxu =−−= θ ,                            (2.2) 

with ),(0 txu , ),(0 txw  being the displacements of neutral axis that is located at the high h0 from 

the central axis; θ  is slope of the cross-section. Therefore, constituting equations get the form 

θγθε −∂∂=∂∂−−∂∂= xwxhzxu xzx /;/)(/ 000                                 (2.3) 

and 

xzxzxx zGzE γκτεσ )(;)( == .                                            (2.4) 

In the latter equation κ  is a coefficient introduced to account for the geometry-dependent 
distribution of shear stress. Hamilton principle allows one to obtain equations of motion in the 
time domain as 

0121111 =−′′− θɺɺɺɺ IuAuI ; 
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0)(33222212 =−′+′′+− θθθ wAAIuI ɺɺɺɺ ;                                       (2.5) 

0)(3311 =′−′′− θwAwI ɺɺ , 

where 
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Introducing the displacement amplitudes 

∫=Θ
∞

∞−

− dtetxwtxtxuWU tiωθ )},(),,(),,({},,{ 00                         (2.7) 

Eq. (2.5) get to be 

0)( 12
2

1111
2 =Θ−′′+ IUAUI ωω ; 

0)()( 3312
2

2222
2 =Θ−′+−Θ ′′+Θ WAUIAI ωω ;                                  (2.8) 

0)(3311
2 =Θ′−′′+ WAWIω . 

Using the following matrix and vector notations 
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Eq. (2.8) are rewritten in the form [19] 
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0=+′+′′ CzzΠzA .                                                    (2.9) 

2.2. Crack modeling 

Assume that the beam has been cracked at the position e  measured from the left end of 
beam and the crack is modeled by a pair of equivalent springs of stiffness T  for translational 
spring and R  for rotational one. Therefore, conditions that must be satisfied at the crack are 

;/)()0()0( TeNeUeU =−−+ ;/)()0()0( ReMee =−Θ−+Θ );0()0( −=+ eWeW  

)()0()0();0()0();0()0()( eMeMeMeQeQeNeNeN =−=+−=+−=+= , (2.10)    

where MQN ,, are respectively internal axial, shear forces and  bending moment at section x  

)(;; 332211 Θ−′=Θ′=′= xxx WAQAMUAN .                                   (2.11) 

Substituting (2.11) into (2.10) one can rewrite the latter conditions as 

);()0()0( 1 eUeUeU x′+−=+ γ )()0()0( 2 eee xΘ′+−Θ=+Θ γ ; )0()0( −=+ eWeW ; 

)()0()0();0()0();0()0( 2 eeWeWeeeUeU xxxxxxx Θ′+−′=+′−Θ′=+Θ′−′=+′ γ ,   (2.12) 

RATA /;/ 222111 == γγ .                                                (2.13) 

The so-called crack magnitudes 21,γγ  introduced in (2.13) are function of the material 
parameters such as elastic modulus and they should be those of homogeneous beam 
when 0EEE bt == . On the other hand, using expressions (2.6) the crack magnitudes (2.13) can 

be rewritten as 

),();,( 2211 nRnR EbEa θγγθγγ == ,                                        (2.14) 

where  

;/;/ 000 RIETAE ba == γγ  
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In case of homogeneous beam when 1=eR  the crack magnitudes must be equal 

to 10γ , 20γ , that are calculated from crack depth a for axial [20] and flexural [21] vibrations as 

hazzhfTAE /),()1(2/ 1
2
00010 =−== νπγ ;                                (2.16) 
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For modal analysis of cracked FGM beam crack magnitudes are proposed herein to be 
approximately calculated using expressions (2.16-2.17) with 2010, γγγγ == ba , i. e. 

)();( 2211 aFaF == γγ ;                                               (2.18) 

).()1(6)();()1(2)( 22
2
0211

2
01 afhaFafhaF σνπθνπ −=−=                     (2.19) 

These functions would be used for calculating the crack magnitudes from given crack depth. 

2.3. Characteristic equation 

Continuous solution of Eq. (2.9) sought in the form xeλdz =0  yields the equation  

0][ 2 =++ dCΠA λλ .                                                    (2.20) 

The latter equation would have nontrivial solution with respect to constant vector d under 
the condition 

0]det[ 2 =++ CΠA λλ , 

that can be in turn expressed in the form  
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This is in fact a cubic equation with respect to 2λη =  that could be elementarily solved and 

results in three roots 321 ,, ηηη . Introducing the notations  

336,3225,2114,1 ;; ηληληλ ±=±=±=±=±=±= kkk ,                (2.21) 

general continuous solution of Eq. (2.9) is represented as 

CGz ),(),(0 ωω xx = ,                                                 (2.22) 

with TT ddCC ),...,(),...,( 161161 ==C  and  

)],(),([),( 21 ωωω xxx GGG = ;                                     (2.23) 
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Using (2.22), it can be found that solution of Eq. (2.9) denoted by )(xS satisfying the 
conditions 

TT SSS ),0,0()0(;)0,,()0( 0
3

0
2

0
1 =′= SS .                                 (2.24) 

is represented as 

})]{([)( 0SΦS xx = ,                                               (2.25) 
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where TSSS },,{ 0
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a particular solution )(xcz of Eq. (2.9) that satisfies initial conditions 

T
xc

T
xxc eeeU ))(,0,0()0(;}0),(),({)0( 221 Θ′=′Θ′′= γγγ zz ,                    (2.28) 

is  

   )}()]{([)}(]{)][([)( 00 exexx cc zGzΣΦz ′=′= .                               (2.29) 

Using the matrix-function notation 
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one is able to prove that the function  

)()()()( 00 eexxx zKzz ′−+=                                         (2.31) 

is general solution of Eq. (2.9) satisfying conditions (2.12) at the cracked section. 

It can be easily to verify that boundary conditions for cantilever beam are  

0),0(),0(),0( === ttwtu θ ; 0),(),(),( === tLQtLMtLN .       (2.32a); (2.32b) 

Applying conditions (2.32a) for solution (2.31) leads to  

0202101 =+ CBCB ,                                                  (2.33) 
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Obviously, the above equation allows the vectors 21,CC to be expressed as 
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with an arbitrary constant vector D, so that solution )(0 xz  can be rewritten in the form   

DGz ),(),( 00 ωω xx = ,                                               (2.34) 

where  
1

022
1

0110 ),(),(),( −− −= BGBGG ωωω xxx . 

Consequently, one obtains 

})]{,([})]{,()(),([)( L00 DGDGKGz ωωω xeexxx =′−+= .                  (2.35) 

Applying boundary condition (3.32b) for solution (2.34) one gets 

0})]{[ LL =DB ω ,                                                     (2.36) 
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So that characteristic or frequency equation of the cracked FGM beam is obtained as 

0)](det[)( LL ==Λ ωω B .                                              (2.37) 

Positive root jω  of this equation provide desired natural frequency of the beam. In the case of 

intact beam the frequency equation (2.37) is reduced to 

 0)](det[)( 0L0 ==Λ ωω B .                                              (2.38) 

{ } Lxx == ),()( 0LL0 ωω GBB . 

Thus, forward problem is to calculate natural frequencies of cracked or uncracked FGM 
beam by solving Eq. (2.37) or (2.38). 

3. NUMERICAL RESULTS AND DISCUSSION  

3.1. Comparative study 

To investigate effect of actual position of neutral axis on natural frequencies of Timoshenko 
FGM cantilevered beam, it is examined an undamaged beam studied in [4] that is composed 

from steel: 3.0,/7800,210 1
3 === µρ mkgGPaE bb  at the bottom and Aluminum Oxide 

(Al 2O3): 25.0,/3960,390 3 === ttt mkgGPaE µρ  at the top surface. 

Tables 1 shows first five natural frequencies computed in the present paper for various 
slenderness ratio L/h, and power law index n. Comparison with those obtained in [4] where 
neutral axis is assumed coincident with the middle one shows that effect of actual position of 
neutral axis on the lower natural frequencies is clearly observed in the case of small slenderness, 
L/h=5, and n=2. In this case natural frequencies calculated with actual position of neutral axis 
are lower than those computed by the centroid axis theory. However, higher natural frequencies 
of FGM beam with greater slenderness and power law index are not very much changed by the 
correcting position of neutral axis. 
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Table 1. Comparison of frequency parameters, bb EhL /)/( 2 ρωλ = , for undamaged FGM cantilever 

beam: Present – actual and Ref. [4] – centroid position of neutral axis. 

L/h 5 10 20 30 

n Fr. 
No. 

Present Ref.[4] Present Ref.[4] Present Ref.[4] Present Ref.[4] 

 
 

0.1 

1 
2 
3 
4 
5 

1.7377    
9.3254  

14.1039  
22.3755  
37.5464 

1.7574 
9.0511 
14.095 
22.682 
37.747 

1.7854 
  10.6630 
  28.0582 
  28.3600 
  51.8239 

1.7966 
10.782 
28.190 
28.404 
51.618 

1.8020 
  11.1116 
  30.4454 
  56.3576 
  58.0334 

1.8070 
11.196 
30.800 
56.379 
58.897 

1.8060 
  11.2359 
  31.1476 
  60.2240 
  84.5711 

1.8089 
11.278 
31.325 
60.681 
84.569 

 
 

0.2 

1 
2 
3 
4 
5 

1.6294 
  8.6806 
13.4167 
20.9419 
35.5698 

1.6638 
8.9969 
13.390 
21.482 
35.754 

1.6804 
   9.9804 
 26.3172 
 26.9510 
 48.9926 

1.7010 
10.208 
26.781 
26.895 
48.878 

1.7011 
10.4534 
28.5635 
53.4530 
54.4140 

1.7107 
10.600 
29.161 
53.562 
55.762 

1.7061 
10.5981 
29.3406 
56.6568 
80.3494 

1.7126 
10.678 
29.657 
57.449 
80.343 

 
 

0.5 

1 
2 
3 
4 
5 

1.4308    
7.5158  

12.0814  
18.3974  
32.0833 

1.4911 
8.0609 
12.012 
19.243 
32.022 

1.4852 
    8.7058 
  22.8654 
  24.5762 
  43.5626 

1.5244 
9.1477 
24.024 
24.098 
43.787 

1.5118 
  9.2390 
25.1327 
47.3355 
48.3416 

1.5332 
9.4992 
26.130 
48.048 
49.962 

1.5183 
  9.4075 
25.9870 
50.0731 
72.0863 

1.5348 
9.5691 
26.576 
51.475 
72.072 

 
 

1.0 

1 
2 
3 
4 
5 

1.2809 
  6.6597 
10.9037 
16.4188 
28.9477 

1.3557 
7.3164 
10.811 
17.441 
28.989 

1.3345 
    7.7397 
  20.3079 
  22.1864 
  38.7308 

1.3864 
8.3146 
21.623 
21.886 
39.732 

1.3636 
  8.3071 
22.5403 
42.3703 
43.5214 

1.3945 
8.6383 
23.755 
43.246 
45.402 

1.3705 
  8.4791 
23.3925 
45.0165 
64.8906 

1.3960 
8.7027 
24.165 
46.795 
64.870 

 
 

2.0 

1 
2 
3 
4 
5 

1.1757 
  6.1047 
  9.8238 
15.0301 
26.4566 

1.2471 
6.7053 
9.7403 
15.937 
26.428 

1.2252 
   7.1063 
 18.6028 
 20.0358 
 35.5854 

1.2762 
7.6440 
19.481 
20.088 
36.403 

1.2519 
  7.6240 
20.6777 
38.6088 
39.4505 

1.2839 
7.9501 
21.851 
38.961 
41.733 

1.2583 
  7.7835 
21.4688 
41.3021 
58.4651 

1.2853 
8.0112 
22.239 
43.049 
58.442 

 
 

5.0 

1 
2 
3 
4 
5 

1.1030 
  5.8414 
  8.8103 
14.3168 
24.9321 

1.1446 
6.1274 
8.7633 
14.516 
24.009 

1.1405 
    6.6706 
  17.3374 
  17.7729 
  32.4530 

1.1722 
7.0111 
17.527 
18.391 

33.2625 

1.1604 
   7.0955 
 19.2998 
 35.0124 
 36.5838 

1.1795 
7.3014 
20.057 
35.053 
38.278 

1.1651 
   7.2209 
 19.9462 
 38.4225 
 52.5932 

1.1809 
7.3594 
20.425 
39.525 
52.580 

 
 

10 

1 
2 
3 
4 
5 

1.0629 
  5.6345 
  8.3591 
13.5189 
22.8182 

1.0867 
5.8159 
8.3430 
13.776 
22.783 

1.0962 
    6.4753 
  16.6488 
  17.0828 
  31.2177 

1.1130 
6.6562 
16.686 
17.459 
31.575 

1.1105 
   6.8192 
 18.6108 
 33.3597 
 35.3365 

1.1199 
6.9324 
19.394 
33.372 
36.345 

1.1138 
   6.9167 
 19.1378 
 36.9246 
 50.0635 

1.1212 
6.9876 
19.394 
37.532 
50.058 
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Figure 1. Sensitivity of natural frequencies (a- first, b- second, c- third) in dependence on crack depth              

(5 % - 30 %) and elasticity modulus ratio Re = 0.2&5.0 with L/h = 10, n = 5. 
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3.2. Sensitivity of natural frequencies to crack  
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Figure 2. Sensitivity of natural frequencies (a- first, b- second, c - third) in dependence on the 

elasticity modulus ratio Re (0.1 – 10) and n=0.5;5.0 with L/h=10, a/h=20%. 
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The change in natural frequencies caused by a crack is usually called sensitivity of the 
natural frequencies to crack. The natural frequency sensitivity is represented in this paper by a 
ratio of the damaged to undamaged frequencies as function of crack location along the beam 
length. Such indicator for the natural frequency sensitivity is investigated herein in dependence 
on the material and geometry parameters of a FGM cantilever beam. Results are shown in Figs. 
1-5 for combinations of various crack depth a/h, slenderness ratio L/h, power law index n and 
elasticity modulus ratio Re. 

First, it is observed in the Figures that, likely to the homogeneous beam, a natural 
frequency could be unchanged if crack occurred at some positions on beam. Such positions are 
called critical points (or frequency node) for vibration mode with the unchanged frequency. For 
instance, the free end of homogeneous cantilever beam is a consistent critical point for all modes 
including either axial or flexural vibration. Approximate critical points for first three vibration 

modes with undamaged natural frequency0
kω  of an FGM beam are given in Table 2.  

Table 2. Possible critical points for FGM Timoshenko cantilever beam. 

Mode First frequency node Second frequency node Third frequency node 

1 1.0 

2 0.22 1.0 no 

3 0.13 0.49 1.0 

Observation of the graphs given in Figs. 1-4 provide that the sensitivity of natural 
frequencies is monotonically reducing with growing crack depth and it is dependent also on the 
material and geometry of the beam. Namely, the sensitivity is increasing with elasticity modulus 
ratio btE EER /=  for 1<n  and decreasing when 1>n . The latter implies that increase of 

elasticity modulus from bottom to top of Timoshenko beam makes the natural frequencies more 
or less sensitive to crack dependently on that 1<n  or 1>n . Similarly, it is observed from Fig. 
3 that natural frequency sensitivity is increasing with n for a fixed 1<ER and would be 

decreasing if 1>ER . Fig. 4 shows that natural frequencies of flexural vibration modes become 
less sensitive to crack for increasing slenderness ratio and it is independent on whatever material 
the beam is made of but the axial mode frequencies show to be most sensitive to crack when L/h 
= 10. 
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Figure 3. Sensitivity of natural frequencies (a- first, b- second, c-third) in dependence on the power law 

index n = 0.2 -10; the slenderness ratio L/h10 with elasticity modulus ratio Re = 0.2 & 5.0 and crack depth 
a/h = 20 %. 
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Figure 4. Sensitivity of natural frequencies (a- first, b- second, c-third) in dependence on the slenderness 
ratio L/h = 5 - 50 with elasticity modulus ratio Re = 0.2 & 5.0, n = 05 & 5.0 and crack depth a/h = 20 %. 
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4. CONCLUSION 

Major results obtained in the present paper are as follows: 

A consistent theory of vibration beam has been formulated in the frequency domain for 
functionally graded Timoshenko beam that can be used for analysis of either free or forced 
vibrations in the beam.  

Frequency equation for functionally graded Timoshenko beam with single crack modeled 
by coupled translation and rotation springs was constructed in a form that is applicable 
straightforward to frequency analysis of the beam. Application of the equation for natural 
frequency analysis of FGM beam demonstrates that natural frequencies of flexural vibration 
modes are more sensitive to crack than those of axial vibration modes and the natural frequency 
sensitivity is strongly dependent on both material and geometry parameters of functionally 
graded Timoshenko beam. 

The theory proposed in the present work can be further developed for analysis and 
identification of FGM beam with multiple cracks.  
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