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ABSTRACT

Free vibration of FGM Timoshenko beam is invesgdaon the base of the power law
distribution of FGM. Taking into account the actpalsition of neutral plane enables to obtain
general condition for uncoupling of axial and flesduvibrations in FGM beam. This condition
defines a class of functionally graded beams foickwhaxial and flexural vibrations are
completely uncoupled likely to the homogeneous tsedatural frequencies and mode shapes
of uncoupled flexural vibration of beams from thass are examined in dependence on material
parameters and slenderness.

Keywords:FGM, Timoshenko beam; Modal analysis; Coupledatibns.

1. INTRODUCTION

The functionally graded material (FGM) that usuatigmposes of metal and ceramic
constituents has been proved to be an advancedosimgompared to the layered ones. The
fundamentals of manufacturing technology, modelamyd analysis of that material were
reviewed in [1 - 2]. Though the powerful methodslswas finite element [3 - 5], dynamic
stiffness [6] and spectral element [7] have bekdealeloped for analysis of FGM structures, the
analytical method has still remained the most iffit tool for dynamic analysis of beam-like
FGM structures. Aydogdu and Taskin [8] have exanchiddferent high-order shear deformation
theories by computing natural frequencies of simglpported functionally graded beam and
shown that the classical beam theory gives higlesults. Li [9] developed a theory of
functionally graded Timoshenko beam neglecting d@xél displacement and used to study
flexural waves and free vibration of Timoshenkorhe®radhan and Chakraverty [10] studied
natural frequencies of both Euler-Bernoulli and @&henko functionally graded beams in
dependence on material power-law exponent usindeRgyRitz method. Authors of Ref. [11]
investigated effect of slenderness ratldh] and the power-law exponenh)(on natural
frequencies of a functionally graded beam using fife-order shear deformation theory of
beam. Wei et al. [12] and Aydin [13] studied frabration of functionally graded beam with
edge cracks and dynamic responses of functionedigeyl beams to moving loads were obtained
in [14, 15]. Note that most of the aforementionkdatries developed for dynamic analysis of
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functionally graded beam are based on the assumititad neutral plane coincides with the mid-
plane of beam. This is not true for functionalladed beam, especially, in the case of high
gradient of elasticity. Recently, Eltaher et ab][have studied effect of exact position of neutral
axis on natural frequencies of functionally gra@eder-Bernoulli beam and stated that the mid-
plane theory of FGM beam leads natural frequertoié® overestimated. The authors of present
paper have investigated material constants casulltr functionally graded Timoshenko beam
based on the neutral-plane theory [17] and showhdbupling of axial and flexural vibrations
in FGM beam is strongly dependent on the mateaafmeters. Nevertheless, the coupling of
axial and flexural vibrations in FGM beam, to thdhmrs’ knowledge, has not been thoroughly
studied.

Objective of this study is to investigate uncouphgrations in functionally graded
Timoshenko beam. Namely, the dynamic problem st fiormulated for functionally graded
Timoshenko beam taking into account the actualtiposof neutral axis. This enables to obtain
general condition for uncoupling of axial and fleduvibration in FGM Timoshenko beams.
Numerical analysis of modal parameters of uncouglerural vibration is carried out to
illustrate and validate the proposed theoreticabtigpment.

2. UNCOUPLED VIBRATION CONDITION

Consider a beam of length, cross-section aredA=bxh made of FGM with the
parameters varying accordingly to the power law

E(2) E, E-E "
G(2); =1G,  +:G, -G, (§+Ej ,—h/2<z<h/2, (2.1)
o(2) Lo Pt~ Py

where E, G ang stand for elasticity, shear modulus and matergisity and indexesandb
denote the top and bottom materials; z is ordioatke point from the central axis at higf2.
Assuming linear theory of deformation the displaeatrfields in the cross-sectionxaare

u(x zt) =uy,(x,t) — (z—hy)8(x,t); w(x z,t) = w,(x,t), (2.2)
with Uy (X,t), Wy (X,t) being the axial and flexural displacements of reutxis that is located

at the highh, from the central axisg is slope of the cross-section. Therefore, cortstigu
equations get the form

g, =0U,/0x—(z—h,)o8/0x;y,, =ow,/ox-86 (2.3)

and
o, =E(9é&,; 1y, =KG(2) Yy, (2.4)
Using Hamilton principle equations of motion candegived for free vibration as
(I ,U=AU") - (Ilzé -A,0")=0;
(I 12[j - Aizu") - (I 229 - Azzgn) + A33(W' - 9) =0; (2-5)
l,W—=A,(W -8)=0,

where
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(Ars Apy Ao) = LE(Z)(:L z-hy,(2-1g)?)dA Agy = K/{G( 2)dA

(112,112, 122) ZLP(Z)(lz—ho,(z—ho)z)dA =9

Based on the power law (2.1) for FGM the constéh®) can be calculated as follow
A, =bhEF,(R); A, =bh*E,F,(R); A, =bh’E F,(R); A;; =bhyG,F,(R,); (2.7)
l,, =bho,F,(R,);1,, =bhW’p,F,(R,); |, =bh’*p,F,(R,);
X+n X+n 3Xx+n 2x+n LXEn o

00 e =2 - a;Fy(x) = - a a
(L+n) 22+n)  (@+n) 3@+n) (@+n)  @Q+n)

R =E/E;R =p/p:R =G /G, ;a=1/2+h,/h.

F(X) =

It can be seen from Eq. (2.5) that the coefficiéqi,|,, characterize coupling of axial and
flexural vibrations. Indeed, under the condition

1, =A, =0, (2.8)
the first equation in (2.5) is uncoupled with twexhones. Note that if neutral axis is assumed to
be coincident with the central one, i.@.=1/2 the uncoupling condition (2.8) leads to either
n=0 orR =R, =1. This implies that axial and flexural vibrationseauncoupled only for

homogeneous beam. However, taking account of ep@sition of neutral axis determined in
[16] as

P __ n(R-1
o e R) 29
the coefficient”A, =0 and
l, _ (R -R)n (2.10)

2" phtp,  2Q+m(R+N)

Therefore, axial and flexural vibrations may be augged not only for homogeneous beam,
when n =0 but also for FGM beam such that

R=R,. (2.11)
This type of functionally graded material can bkethproportional for which
E:E:@:i:cg_ (2.12)
ln A 12 P

Under the conditions (2.12) equations of uncoupdethl and flexural vibrations are
reduced to

i-CZu"=0; (2.13)
6-C26"-Q5(W-6)=0;W-QZ(w'-8)=0; (2.14)
Q%=A33/|22?Qf=A33/|11- 13)
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Eq. (2.13) describes axial vibration of an equimtleomogeneous beam with constant wave
speedC, and purely flexural vibration of FGM beam is gaved by Eq. (2.14). Note that the

purely flexural vibration of a FGM beam was studied9] by neglecting axial displacement
(u=0), but it is not exactly R / R, = 103) uncoupled flexural vibration of the proportional
functionally graded (PFG) beam what is subjectuisequent sections

3. FREE UNCOUPLED VIBRATION

Since the theory of axial vibration described by £313) for homogenous beam has been
well developed, in the present work only uncouglegural vibration governed by Eq. (2.14) is
investigated. Thus, seeking solution of Eq. (2ithdhe form

B(x,t) = O(X)e'“; w(x,t) =W(Xe'“, (3.1)
one gets
(0?10 + Ay@") + Ayy(W' = ©) = 0; &1, W + A,,(W' - ©') =0. (32)

Using the following vectoz ={®,W}" and matrices

N T A TR AT

0 Ag Ay 0 0 @’y
Eqg. (3.3) can be rewritten in the matrix form
A Z"+AZ7+A,z=0. (B.4

Now, seeking solution of Eq. (3.4) in the fozg = de™ leads the equation to
[A*A, +AA, +A,]ld=0. (3.5)

The latter equation would have nontrivial solutieith respect to constant vectdrunder the
condition

detli’A, + A, +A,] =0, (3.6)
that can be expressed in the form
A +al?+b=0, (3.7)
where
a=a’(l1y) Agy+ 1551 Agy) iD= (Plig ] Ag)(@Pl | Agy = Agal Agy) . (3.8)
In general, equation (3.7) is elementarily solved gives in result
2, =(—azva?-4b)/2=n,,. (3.9)
Note first that Eq. (3.7) would have trivial root € 0) under the condition
W=, = Agal 1y = Q5 @1

termed as cutoff frequency of the beam. Otherviiee Eq. (3.7) has all four imaginary roots for
w > &), and two real roots itu < w.. Hence, four roots of Eq. (3.7) are
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Az =1k Ay, =2k ks =4, 1 =12 (3.11)
and general solution of Eq. (3.4) can be repredesge

,=]0]_ d % +d,e" +de™ +dy e (3.12)
W d,.e" +d,.e“ +d,.e " +d, e’ '
21 22 23 24

Taking into account the second equation in (3.2) gets

dyy = a40yy,dyp = 5015, dpg = —a105, Aoy = —a 5014, (3.13)
where
a0y = KyAgg /(P gy +KE Agg), @y = Ky Agg (00?117 + K5 Agg) . (3.14)
Therefore, expression (3.12) can be now rewritbethe form
z(x,&) =G (X a)d, (3.15)

with d = (dy,...d)" = (dyy,.. 1) and
GXw) =[G,(x ) G,(x )],
knx kX —kx —koX
—| € e . - e e
G,(xw) = L"leklx azekzx}Gz(X, w) = {_ e _a,ze—kzx:|- (3.16)

The solution (3.15) should fulfill conditions aktlends of the beam that can be represented
in the form

Bo{z}|,.o=0:B {7} ,..= 0, (3.17)

whereB,, B, are differential operators of dimension 2x2. Fwtance, the operatoBs, B, for
conventional boundary conditions for respectivémye support; clamp and free end would be

o[ ol B[ 5]

Now, decomposing the vectord ={d,,d,}" with d, ={d;,d,}";d, ={d,,d,}" the
condition at the left end of beam can be expreased
By d; +Bgd, =0, (3)18
where
Boi(w) = BO{Gl(Xl w)}| x=01 Bo2(@) = Bo{Gz(X' w)}| x=0 *

Obviously, Eq. (3.18) allows eliminating one of thectorsd,,d,and as result one is able to
reconstruct the solutioa(x) as

z(x,w) =Gy (x,w)D 19)
with G,(X,w) being 2x2 dimension matrix function and arbitrappnstant vector

D ={D,, DZ}T. Applying boundary conditions at the other emd=(L) of beam for solution
(3.19) one gets
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[G L (@KD} =0; .28)
G (w)= BL{GO (X, w)}| x=L - (3.21)
This equation has nontrivial solution only under dondition
Ly(w) =det[G | (w)] =0, (3.22)

that provides the so-called frequency equationHBM beam. Each rooiv; of the frequency
equation is related to a mode shape

®;(x) =C;Gy(xw,)D;, (3.23)

whereCj is an arbitrary constant arﬁj is the normalized solution of (3.18) witl? = @), .

4. RESULTS AND DISCUSSIONS

In this section numerical analysis is examined R&iG beam with the initial material
parameters [9]: SteelE, = 210GPa, o, = 785kg/m?, 1, = 0.3(bottom surface) and shear
module is calculated &=E/2(1+ ). The material parameters of the top surface are
calculated from those of bottom with proportionatio r: E, =rE,; p, =rp,. Under the

analysis the dimensionless natural frequendes= (w; L2/h)1/pb/Eb and related mode
shapes are examined in dependence on the proprtiatio; exponent of the power law,

(called here material distribution index) and the heaw modulus
ratiosy =G, /G, =r(u, +) /(1 +1).

First, natural frequencies of homogenous Timoshesitkply supported beam are computed
and compared to those obtained in Ref. [6] by theathic stiffness method and in Ref. [18] by
analytical method. It can be observed exceller¢@gent of the results that consequently verify
the proposed above theory.

Table 1 Comparison of natural frequencies for homogendau®shenko beam.

L/h=10 L/h =30 L/h =100

Freq.| Present| Ref. [18] Ref.[6] Present Ref. [18] R6f.[ Present Ref. [18]
No

1 2.8020 | 2.8020| 2.8028 2.8438 2.8438 2.8439 2.8486 2.8486

2 | 10.6948] 10.6947 - 11.311f 11.3116 - 11.3887 BI.38

3 | 15.6092] 15.7080 - 25.2184  25.2184 25.6046 25.60
E =70 GPap=2700kg/r,u=0.3

4.1. Cutoff frequency analysis

Cutoff frequency (3.10) computed as function ofpgandional ratio in various material
distribution index and slenderness is shown in.Fig8. It can be observed from the Figures that
cutoff frequency is monotonically increasing wittoportional ratio larger 1 fon<5 and it is
decreasing with growing forn>5. Obviously, cutoff frequency of homogenous beam is
constant and it is rapidly increasing with beanrmdé¥ness L/h. Moreover, for a fixed material
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distribution index cutoff frequency is weakly depent on the proportional ratio; the

=2.

dependence is almost linear for= 50 and strongly nonlinear fan

Aduanbaily Joino reuoisuaLIPUON

Proportional ratio, r

Figure 1 The uncoupled cutoff frequency vs. proportiomaia for various material distribution index

L/h=100

L/h=5 "

2500

2000 (- - - -

1000 - - ==

Aouanbaiy JJoINd [euoisuaWIPUON

4.5

2.5 3.5
Proportional ratio, r

1.5

0.5

Figure 2 The uncoupled cutoff frequency vs. proportiomaia for various slenderness L/h.

4.2. Natural frequency analysis
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1.1

1.05

=
o

Namelized naturd frequency

0.95

M aterial proportional factor, r

Figure 3 Normalized uncoupled flexural frequency of FGMabein dependence on the
proportional factort’ in various material distribution indéXx.

1.1

1.08

Nomalized flexural frequency

0.94

0.92

Proportional factor

Figure 4 Normalized uncoupled flexural frequency of FGMabein dependence on the proportional
factor Rin various slendernedgh.

Typical variation of natural frequencies versuspartional ratio is shown in Figs. 3-4,in
which there are presented natural frequencies rimedaby those of homogeneous beam
(r =1). It can be seen that flexural natural frequenoePFG beam are limited to the range
(0.9-1.1) times of the frequencies of homogeneomsanb They are less than those of
homogeneous beam wham<5 and become greater fan=5. The linear dependence of
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natural frequencies on proportional ratio gets ¢oifon = 50. Normalized natural frequencies
are all monotonically increasing with slendernessrf>1 and decreasing far <1.

T

Figure 5.First mode shape in dependence on the slenderfiess L

4.3. Mode shape analysis

Numerical analysis shows that mode shapes of tlé& lffam are not affected by material
parameters such as proportional ratisnd material distribution indexx. They may be slightly
modified by various slenderness of the beam whdeisonstrated in Figs. 5-7 where first three
mode shapes of clamped functionally graded Timdsthbeam are presented.

Figure & Second mode shape in dependence on the slenslérhes
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Figure 7. Third mode shape in dependence on the slendeltfiess

5. CONCLUSION

The main results obtained in present study arelksiing:

1. In the framework of the proposed theory of vibratior functionally graded beam based
on true position of neutral plane, a condition forcoupling of axial and flexural vibration
modes has been obtained.

2. It was shown that uncoupled axial vibration of subke beam remains completely
similar to that of homogeneous beam.

3. Numerical analysis has demonstrated that natueduencies including the cutoff
frequency in uncoupled flexural vibration are tyglig dependent on the material and
geometrical parameters of the beam.

4. Mode shapes of the uncoupled flexural vibrationiasensitive to material parameters;
they are dependent only on slenderness of theifunadly graded beam.

5. All the above mentioned concluding remarks provigeful instructions for modal
testing and identification of functionally gradededm. Moreover, the obtained natural
frequencies of an FGM beam in dependence on theriaaproperties enable one to control not
only the vibration characteristics but also théretiss and material density of the beam.
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TOM TAT
DAO BPONG TACH ROl CUA DAM TIMOSHENKO CO @ Li TINH BIEN THIEN
Nguyén Ngoc Huyért, Nguyén Tién Khiént
'Pai hoc Thiy loi, 175 Tay 8n, Bong Pa, Ha N

2Vién Co hoc, Vién HLKHCNVN, 18 Hoang Qic Viét, Cau Gidy, Ha Ni

"Email: ntkhiem@imech.ac.ykhiemvch@gmail.com

Bai bao nay nghiénue daodong riéng éa dim Timoshenko céli tinh bién ddi theo
quy luat lity thira. Viéc tinhdén vi tri thyc cia tnuc trung hoa (khéng @hla truc gita dim) cho
phép ta nin dugc diéu kién dé daodong che truc va dacdong wn tach si nhau (t néndoc
lap) glong nhr dam dong nhit. Tuy nhién cac thambscaa cac dng daodong tach &i do van la
ciia dim c6 @ li tinh bién thién (ch khdng phii cua dim dong nhit). O day, nghién gu tn
va chng riéng trong dadong wn tach di caa cim FGM phy thudc vao cac thamdsvit liéu va
hinh hyc.

Tir khoa Vit ligu oo li tinh bién thién, dm Timoshenko, phan tich dadng, daodong quan
lién
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