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ABSTRACT 

Free vibration of FGM Timoshenko beam is investigated on the base of the power law 
distribution of FGM. Taking into account the actual position of neutral plane enables to obtain 
general condition for uncoupling of axial and flexural vibrations in FGM beam. This condition 
defines a class of functionally graded beams for which axial and flexural vibrations are 
completely uncoupled likely to the homogeneous beams. Natural frequencies and mode shapes 
of uncoupled flexural vibration of beams from the class are examined in dependence on material 
parameters and slenderness. 

Keywords: FGM, Timoshenko beam; Modal analysis; Coupled vibrations.  

1. INTRODUCTION 

The functionally graded material (FGM) that usually composes of metal and ceramic 
constituents has been proved to be an advanced composite compared to the layered ones. The 
fundamentals of manufacturing technology, modeling and analysis of that material were 
reviewed in [1 - 2]. Though the powerful methods such as finite element [3 - 5], dynamic 
stiffness [6] and spectral element [7] have been all developed for analysis of FGM structures, the 
analytical method has still remained the most efficient tool for dynamic analysis of beam-like 
FGM structures. Aydogdu and Taskin [8] have examined different high-order shear deformation 
theories by computing natural frequencies of simply supported functionally graded beam and 
shown that the classical beam theory gives higher results. Li [9] developed a theory of 
functionally graded Timoshenko beam neglecting the axial displacement and used to study 
flexural waves and free vibration of Timoshenko beam. Pradhan and Chakraverty [10] studied 
natural frequencies of both Euler-Bernoulli and Timoshenko functionally graded beams in 
dependence on material power-law exponent using Rayleigh-Ritz method. Authors of Ref. [11] 
investigated effect of slenderness ratio (L/h) and the power-law exponent (n) on natural 
frequencies of a functionally graded beam using the first-order shear deformation theory of 
beam. Wei et al. [12] and Aydin [13] studied free vibration of functionally graded beam with 
edge cracks and dynamic responses of functionally graded beams to moving loads were obtained 
in [14, 15]. Note that most of the aforementioned theories developed for dynamic analysis of 
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functionally graded beam are based on the assumption that neutral plane coincides with the mid-
plane of beam. This is not true for functionally graded beam, especially, in the case of high 
gradient of elasticity. Recently, Eltaher et al. [16] have studied effect of exact position of neutral 
axis on natural frequencies of functionally graded Euler-Bernoulli beam and stated that the mid-
plane theory of FGM beam leads natural frequencies to be overestimated. The authors of present 
paper have investigated material constants calculated for functionally graded Timoshenko beam 
based on the neutral-plane theory [17] and shown that coupling of axial and flexural vibrations 
in FGM beam is strongly dependent on the material parameters. Nevertheless, the coupling of 
axial and flexural vibrations in FGM beam, to the authors’ knowledge, has not been thoroughly 
studied. 

Objective of this study is to investigate uncoupled vibrations in functionally graded 
Timoshenko beam. Namely, the dynamic problem is first formulated for functionally graded 
Timoshenko beam taking into account the actual position of neutral axis. This enables to obtain 
general condition for uncoupling of axial and flexural vibration in FGM Timoshenko beams.  
Numerical analysis of modal parameters of uncoupled flexural vibration is carried out to 
illustrate and validate the proposed theoretical development.  

2. UNCOUPLED VIBRATION CONDITION  

Consider a beam of length L, cross-section area hbA ×=  made of FGM with the 
parameters varying accordingly to the power law 
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where E, G and ρ stand for elasticity, shear modulus and material density and indexes t and b 
denote the top and bottom materials; z is ordinate of the point from the central axis at high h/2. 
Assuming linear theory of deformation the displacement fields in the cross-section at x are 

),(),,();,()(),(),,( 000 txwtzxwtxhztxutzxu =−−= θ ,                         (2.2) 

with ),(0 txu , ),(0 txw  being the axial and flexural displacements of neutral axis that is located 

at the high h0 from the central axis; θ  is slope of the cross-section. Therefore, constituting 
equations get the form 

θγθε −∂∂=∂∂−−∂∂= xwxhzxu xzx /;/)(/ 000                                (2.3) 

and 

xzxzxx zGzE γκτεσ )(;)( == .                                            (2.4) 

Using Hamilton principle equations of motion can be derived for free vibration as  

0)()( 12121111 =′′−−′′− θθ AIuAuI ɺɺɺɺ ; 

0)()()( 3322221212 =−′+′′−−′′− θθθ wAAIuAuI ɺɺɺɺ ;                              (2.5) 

0)(3311 =′−′′− θwAwI ɺɺ , 

where 
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Based on the power law (2.1) for FGM the constants (2.6) can be calculated as follow 

)( 1111 RFbhEA b= ; )( 12
2

12 RFEbhA b= ; )( 13
3
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It can be seen from Eq. (2.5) that the coefficient 1212, IA  characterize coupling of axial and 
flexural vibrations. Indeed, under the condition 

 01212 == AI ,                                                          (2.8)  

the first equation in (2.5) is uncoupled with two next ones. Note that if neutral axis is assumed to 
be coincident with the central one, i. e. 2/1=α  the uncoupling condition (2.8) leads to either 

0=n  or 121 == RR . This implies that axial and flexural vibrations are uncoupled only for 
homogeneous beam. However, taking account of exact position of neutral axis determined in 
[16] as 
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the coefficient 012 =A  and 
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Therefore, axial and flexural vibrations may be uncoupled not only for homogeneous beam, 
when  0=n  but also for FGM beam such that 

21 RR = .                                                       (2.11) 

This type of functionally graded material can be called proportional for which  
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Under the conditions (2.12) equations of uncoupled axial and flexural vibrations are 
reduced to 

02 =′′− uCu aɺɺ ;                                                        (2.13) 

0)(2
2

2 =−′Ω−′′− θθθ wCa
ɺɺ ; 0)(2

1 =′−′′Ω− θwwɺɺ ;                                (2.14) 

1133
2
12233

2
2 /;/ IAIA =Ω=Ω .                                               (2.15) 
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Eq. (2.13) describes axial vibration of an equivalent homogeneous beam with constant wave 
speed aC  and purely flexural vibration of FGM beam is governed by Eq. (2.14). Note that the 
purely flexural vibration of a FGM beam was studied in [9] by neglecting axial displacement 
( 0=u ), but it is not exactly ( 03.1/ 21 =RR ) uncoupled flexural vibration of the proportional 
functionally graded (PFG) beam what is subject of subsequent sections 

3. FREE UNCOUPLED VIBRATION 

Since the theory of axial vibration described by Eq. (2.13) for homogenous beam has been 
well developed, in the present work only uncoupled flexural vibration governed by Eq. (2.14) is 
investigated. Thus, seeking solution of Eq. (2.14) in the form  

titi exWtxwextx ωωθ )(),(;)(),( =Θ= ,                                     (3.1) 

one gets 

0)()( 332222
2 =Θ−′+Θ ′′+Θ WAAIω ; 0)(3311

2 =Θ′−′′+ WAWIω .             (3.2) 

Using the following vector TW},{Θ=z  and matrices 
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Eq. (3.3) can be rewritten in the matrix form 

0012 =+′+′′ zAzAzA .                                              (3.4) 

Now, seeking solution of Eq. (3.4) in the form xeλdz =0  leads the equation to  

0][ 012
2 =++ dAAA λλ .                                             (3.5) 

The latter equation would have nontrivial solution with respect to constant vector d under the 
condition 

0]det[ 012
2 =++ AAA λλ ,                                           (3.6) 

that can be expressed in the form  

024 =++ baλλ ,                                                   (3.7) 
where  

)//( 22223311
2 AIAIa += ω ; )//)(/( 22332222

2
3311

2 AAAIAIb −= ωω .         (3.8) 

In general, equation (3.7) is elementarily solved and gives in result  

2,1
22

2,1 2/)4( ηλ =−±−= baa .                                           (3.9) 

Note first that Eq. (3.7) would have trivial root ( 0=λ ) under the condition 

22233 / Ω=== IAcωω ,                                              (3.10) 

termed as cutoff frequency of the beam. Otherwise, the Eq. (3.7) has all four imaginary roots for 

cωω > and two real roots if cωω < . Hence, four roots of Eq. (3.7) are 
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2,1,;; 24,213,1 ==±=±= jkkk jj ηλλ                                  (3.11) 

and general solution of Eq. (3.4) can be represented as  
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Taking into account the second equation in (3.2) one gets 

14224131231222211121 ,,, dddddddd αααα −=−=== ,                     (3.13) 

where 
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Therefore, expression (3.12) can be now rewritten in the form 

dGz ),(),( ωω xx = ,                                                  (3.15) 

with TT dddd ),...,(),...,( 141141 ==d  and  
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The solution (3.15) should fulfill conditions at the ends of the beam that can be represented 
in the form 

{ } { } 0;0 L00 == == Lxx zBzB ,                                            (3.17) 

where B0, BL are differential operators of dimension 2x2. For instance, the operators B0, BL for 
conventional boundary conditions for respectively simple support; clamp and free end would be  
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Now, decomposing the vector T},{ 21 ddd = with TT dddd },{;},{ 432211 == dd the 

condition at the left end of beam can be expressed as  

0202101 =+ dBdB ,                                             (3.18) 

where  

{ } { } 0200201001 ),()(;),()( == == xx xx ωωωω GBBGBB . 

Obviously, Eq. (3.18) allows eliminating one of the vectors 21,dd and as result one is able to 

reconstruct the solution )(xz  as    

DGz ),(),( 0 ωω xx =                                                 (3.19) 

with ),(0 ωxG  being 2x2 dimension matrix function and arbitrary constant vector 
TDD },{ 21=D . Applying boundary conditions at the other end (x = L) of beam for solution 

(3.19) one gets 
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0})]{([ =DG ωL ;                                                (3.20) 

{ } Lxx == ),()( 0LL ωω GBG .                                       (3.21) 

This equation has nontrivial solution only under the condition 

0)](det[)(0 == ωω LL G ,                                           (3.22) 

that provides the so-called frequency equation for FGM beam. Each root jω of the frequency 

equation is related to a mode shape 

jjjj xCx DG ),()( 0 ω=Φ ,                                          (3.23) 

where jC  is an arbitrary constant and jD is the normalized solution of (3.18) with jωω = . 

4. RESULTS AND DISCUSSIONS  

In this section numerical analysis is examined for PFG beam with the initial material 

parameters [9]: Steel: 3.0,/7850,210 1
3 === µρ mkgGPaE bb (bottom surface) and shear 

module is calculated as )1(2/ µ+= EG . The material parameters of the top surface are 

calculated from those of bottom with proportional ratio r: bt rEE = ; bt rρρ = . Under the 

analysis the dimensionless natural frequencies bbjj EhL /)/( 2 ρωω = and related mode 

shapes are examined in dependence on the proportional ratio; exponent of the power law, n 
(called here material distribution index) and the shear modulus 
ratios )1/()1(/ 12 ++== µµγ rGG bt . 

First, natural frequencies of homogenous Timoshenko simply supported beam are computed 
and compared to those obtained in Ref. [6] by the dynamic stiffness method and in Ref. [18] by 
analytical method. It can be observed excellent agreement of the results that consequently verify 
the proposed above theory. 

Table 1. Comparison of natural frequencies for homogeneous Timoshenko beam. 

4.1. Cutoff frequency analysis 

 Cutoff frequency (3.10) computed as function of proportional ratio in various material 
distribution index and slenderness is shown in Figs. 1-2. It can be observed from the Figures that 
cutoff frequency is monotonically increasing with proportional ratio larger 1 for 5≤n  and it is 
decreasing with growing r for 5>n . Obviously, cutoff frequency of homogenous beam is 
constant and it is rapidly increasing with beam slenderness L/h. Moreover, for a fixed material 

 
Freq. 
No 

L/h =10 L/h =30 L/h =100 
Present Ref. [18] Ref. [6] Present Ref. [18] Ref. [6] Present Ref. [18] 

1 2.8020 2.8020 2.8023 2.8438 2.8438 2.8439 2.8486 2.8486 
2 10.6948 10.6947 - 11.3116 11.3116 - 11.3887 11.3887 
3 15.6092 15.7080 - 25.2184 25.2184 - 25.6046 25.6046 

E =70 GPa, ρ=2700kg/m3,µ=0.3 
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distribution index cutoff frequency is weakly dependent on the proportional ratio; the 
dependence is almost linear for 50=n  and strongly nonlinear for 2=n . 
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Figure 1. The uncoupled cutoff frequency vs. proportional ratio for various material distribution index n. 
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Figure 2. The uncoupled cutoff frequency vs. proportional ratio for various slenderness L/h. 

 

4.2. Natural frequency analysis 
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Figure 3. Normalized uncoupled flexural frequency of FGM beam in dependence on the 

proportional factor r  in various material distribution indexn . 
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Figure 4. Normalized uncoupled flexural frequency of FGM beam in dependence on the proportional 

factor R in various slenderness L/h. 

Typical variation of natural frequencies versus proportional ratio is shown in Figs. 3-4,in 
which there are presented natural frequencies normalized by those of homogeneous beam 
( 1=r ). It can be seen that flexural natural frequencies of PFG beam are limited to the range 
(0.9-1.1) times of the frequencies of homogeneous beam. They are less than those of 
homogeneous beam when 5<n  and become greater for 5≥n . The linear dependence of 
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natural frequencies on proportional ratio gets to be if 50=n . Normalized natural frequencies 
are all monotonically increasing with slenderness for 1>r  and decreasing for 1<r . 
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Figure 5. First mode shape in dependence on the slenderness L/h. 

4.3. Mode shape analysis 

Numerical analysis shows that mode shapes of the PFG beam are not affected by material 
parameters such as proportional ratio r and material distribution index n. They may be slightly 
modified by various slenderness of the beam what is demonstrated in Figs. 5-7 where first three 
mode shapes of clamped functionally graded Timoshenko beam are presented. 
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Figure 6. Second mode shape in dependence on the slenderness L/h. 
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Figure 7. Third mode shape in dependence on the slenderness L/h. 

5. CONCLUSION 

The main results obtained in present study are as following: 

1. In the framework of the proposed theory of vibration for functionally graded beam based 
on true position of neutral plane, a condition for uncoupling of axial and flexural vibration 
modes has been obtained.  

2. It was shown that uncoupled axial vibration of such the beam remains completely 
similar to that of homogeneous beam. 

3. Numerical analysis has demonstrated that natural frequencies including the cutoff 
frequency in uncoupled flexural vibration are typically dependent on the material and 
geometrical parameters of the beam. 

4. Mode shapes of the uncoupled flexural vibration are insensitive to material parameters; 
they are dependent only on slenderness of the functionally graded beam. 

5. All the above mentioned concluding remarks provide useful instructions for modal 
testing and identification of functionally graded beam. Moreover, the obtained natural 
frequencies of an FGM beam in dependence on the material properties enable one to control not 
only the vibration characteristics but also the stiffness and material density of the beam. 
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 Bài báo này nghiên cứu dao động riêng của dầm Timoshenko có cơ lí tính biến đổi theo 
quy luật lũy thừa. Việc tính đến vị trí thực của trục trung hòa (không phải là trục giữa dầm) cho 
phép ta nhận được điều kiện để dao động dọc trục và dao động uốn tách rời nhau (trở nên độc 
lập) giống như dầm đồng nhất. Tuy nhiên các tham số của các dạng dao động tách rời đó vẫn là 
của dầm có cơ lí tính biến thiên (chứ không phải của dầm đồng nhất). Ở đây, nghiên cứu tần số 
và dạng riêng trong dao động uốn tách rời của dầm FGM phụ thuộc vào các tham số vật liệu và 
hình học. 
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