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ABSTRACT 

A continuous element (CE) formulation has been presented in this paper for the vibration 
analysis of three joined cross-ply composite conical shells containing fluid. The three joined 
cross-ply composite conical shells containing fluid can be considered as the general case for 
joined conical-cylindrical-conical, joined cylindrical-conical-cylindrical, joined cylindrical-
conical-conical and joined conical-conical-cylindrical shells containing fluid. Governing 
equations are obtained using Midlin thick shell theory, taking into account the shear deformation 
effects. The velocity potential, Bernoulli’s equation and impermeability condition have been 
applied to the shell-fluid interface to obtain an explicit expression for fluid pressure, the dynamic 
stiffness matrix has been built from which natural frequencies have been calculated. The 
appropriate expressions among stress resultants and deformations are extracted as continuity 
conditions at the joining section. A matlab program is coded using the CE formulation. 
Numerical results on natural frequencies are validated with the available results in other 
investigations. The effects of the fluid level, semi-vertex angles and lamination sequences on the 
natural frequencies and circumferential wave number of joined composite conical-conical-
conical shells are investigated. 

Keywords: free vibration, cross-ply composite joined conical-conical-conical shells, dynamics 

stiffness matrix, continuous element method. 

1. INTRODUCTION 

The joined shells filled with fluid of revolution have many applications in various branches 
of engineering such as mechanical, aeronautical, marine, civil and power engineering. The 
research on their mechanical behavior such as vibration characteristics under various external 
excitations and boundary restrictions has importance in engineering practice.  
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The results of investigations on the vibration analysis of cylindrical or conical shells containing 
fluid and a few publications exist on the vibration analysis of joined cylindrical-conical shells. 
Different methods for analyzing free vibration of the cylindrical and conical and joined conical-
cylindrical shells have been applied. Sivadas and Ganesan [1] investigated the effects of 
thickness variation on natural frequencies of laminated conical shells by a semi-analytical finite 
element method. Tong [2, 3] proposed the power series expansion approach to study the free 
vibration of orthotropic and composite laminated conical shells. Shu [4] has employed the 
differential quadrature method to study the vibration of conical shells. The vibration 
characteristic for composite cylindrical shells are carried out by using different approaches such 
as 2D finite element model based on classical thin shell theory [5], 2D analytical method using 
the cubic spline functions [6], analytical method based on the first-order shear deformation 
theory (FSDT) [7]. Senthil and Ganesan [8] performed a dynamic analysis on composite conical 
shells filled with fluid. Kerboua, Lakis and Hmila [9] used a combination of finite element 
method and classical shell theory to determine the natural frequencies of anisotropic truncated 
conical shells in interaction with fluid. 

Irie et al. [10] used the transfer matrix approach to solve the free vibration of joined 
isotropic conical-cylindrical shells. Patel et al. [11] presented results for laminated composite 
joined conical-cylindrical shell with FSDT using finite element method (FEM). Recently, 
Caresta and Kessissoglou [12] analyzed the free vibrations of joined truncated conical-
cylindrical shells, the displacements of the conical sections were solved using a power series 
solution, while a wave solution was used to describe the displacements of the cylindrical 
sections, both Donnell-Mushtari and Flugge equations of motion were used. Kouchakazadeh and 
Shakouri [13] presented study deals with vibrational behavior of two joined cross-ply laminated 
conical shells, joined cylindrical-conical shells…Governing equations are obtained using thin-
walled shallow shell theory of Donnell type and Hamilton’s principle, the appropriate 
expressions among stress resultants and deformations are extracted as continuity condition at the 
joining section of the cones. 

Traditional computational methods like FEM is the discretization operation of the domain 
which causes errors in dynamic analysis, especially in medium and range frequencies. Numerous 
Continuous Elements have been established for metal and composite beams [14 - 15] and plates 
[16]. Nguyen Manh Cuong and Casimir [17] have succeeded in building the DSM for thick 
isotropic plate and shells of revolution. The continuous element models for composite 
cylindrical shells and conical shells presented in works of Tran Ich Thinh and Nguyen Manh 
Cuong [18], [19] imposes a considerable advancement of the study on continuous element 
method (CEM) for metal and composite structures. Recently, the new research for thick 
laminated composite joined cylindrical-conical shells by Tran Ich Thinh, Nguyen Manh Cuong 
and Vu Quoc Hien [20] has emphasized the CEM in assemblying complex structure. 

In this study, the vibrational behavior of a composite joined conical-conical-conical shells 
containing an incompressible and in viscid liquid was investigated. Illustrative examples are 
provided to demonstrate the accuracy and efficiency of the developed numerical procedure.  

2. FORMULATION OF JOINED CROSS-PLY COMPOSITE CONICAL-CONICAL-
CONICAL SHELLS CONTAINING FLUID 

Let’s investigate the joined conical-conical-conical shells containing fluid with (x,θ,z) 
coordinates, as shown in Figure 1. Where x is the coordinate long the cones’ generators with the 
origin placed at the middle of the generators, θ is the circumferential coordinate, and z is the 
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perpendicular to the cones’ surfaces. R1, R2, R3 and R4 are the radius of the system of the cone 
shells at its first, second, third and the small end, respectively. L1, L2 and L3 are lengths of the 
cone shells respectively. α1, α2, α3 are semi-vertex angles of the cone shells. H1, H2, H3 are height 
of the cone shells and H is height of fluid.  

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 1.Geometry of joined composite conical- conical -conical shells containing fluid. 

2.1. Composite conical shell containing fluid formulation 

2.1.1. Constitutive relations 

Consider a laminate composite shell of total thickness h composed by N orthotropic layers. 
The plane stress-reduced stiffnesses are calculated as [23]: 
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Ei,Gij, υ12, υ21: elastic constants of the kth
 layer 

and the laminate stiffness coefficients (Aij, Bij, Dij, Fij) are defined by: 
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where zk-1 and zk are the boundaries of the kth layer.  
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2.1.2. Strains, stress and internal forces resultants 

Following the first-order shear deformation shell theory (FSDT) of Reissner-Mindlin, the 
displacement components are assumed to be: 

( ) ( ) ( )txztxutzxu x ,,,,,,, 0 θϕθθ += ; ( ) ( ) ( )txztxvtzxv ,,,,,,, 0 θϕθθ θ+= ; ( ) ( )txwtzxw ,,,,, 0 θθ =   (3) 

The strain-displacement relations of conical shell are (with R(x)=R1+x.sinα): 
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The force and moment resultants are expressed in terms of strains for cross-ply laminated 
composite conical shell as follows:
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Substituting equations (2) and (4) in equations (5), the force-displacement relation expressions 
for laminated composite conical shell are written as follows: 
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where k is the shear correction factor (k=5/6) 

2.1.3. Equations of motion 

       The equations of motion using the FSDT for laminated composite conical shell containing 
fluid are: 
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where u0, v0, w0: the displacements at the mid-surface; φx, φθ: the rotations of tangents along the x 
and θ axes; P: hydrodynamic pressure acting on the shell surface. 
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with  ρ(k)  is the material mass density of the kth layer.  

2.2. Fluid equations 

The potential function Ф(z,θ,x,t) satisfies the Laplace equation in cylindrical coordinates (z,θ, x):  
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Then, the Bernoulli equation is written:  
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By linearizing this expression, the pressures on the internal regions are: 
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The condition of impermeability of the surface of shell in contact with fluid can be expressed as: 
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where w is the normal displacement of the shell, vf is the velocity of fluid. 

The hydrodynamic pressure acting on the cylindrical shell is then defined by [20]: 
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This value will be introduced in (7) in order to establish the Dynamic Stiffness Matrix for the 
studied structure. 

2.3. Continuity conditions 

The continuity conditions at the conical- conical shell joint can be obtained from 
Kouchakazadeh and Shakouri [13] as follows:  
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where: i = 1, 2. 

3. CONTINUOUS ELEMENT FORMULATION FOR CROSS-PLY COMPOSITE 
JOINED CONICAL-CONICAL-CONICAL SHELLS CONTAINING FLUID 

3.1. Strong formulation 

Here, the state-vector y = {u0, v0, w0, φx, φθ, Nx, Nxθ, Qx, Mx, Mxθ}
T. Next, the Lévy series 

expansion for state variables is written as: 
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where m is the number of circumferential wave.
 Substituting (14) in equations (6) and (7), the ordinary differential equations in the x-

coordinate for the mth mode can be expressed in the matrix form for each circumferential mode 
m as [18-22]:  
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3.2. Dynamic transfer matrix, dynamic stiffness matrix K(ω) 

The dynamic transfer matrix [T]m is given by: 
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Finally, the dynamic stiffness matrix [K(ω)]m for conical shell containing fluid is determined by: 
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The assembly procedure of the finite element method is used to construct the Dynamic Stiffness 
Matrix for combined cylindrical-conical-conical shells containing fluid.  
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Natural frequencies will be extracted from the harmonic responses of the structure by using the 
procedure detailed in [18 - 22]. 

4. NUMERICAL RESULTS AND DISCUSSION 

4.1. Comparative study 

A computer program based on Matlab is developed using CEM of composite joined 
conical-conical-conical shells containing different fluid level. 

Lowest frequency parameters  Ω = ωR1(ρh/A11)
1/2  are validated with analytical solutions 

of Kouchakzadeh [13] for a free-clamped (FC) joined cross-ply laminated conical-conical shells 
in Table 1: L/R3 = 1; h/R3 = 0.01; h = 2 mm; L1 = L2 = L; L3 = 0; α1 = 600, α2 =  300 and α1 = 300, 
α2 = 600; E1 = 135 GPa; E2 = 8.8 GPa; G12 = 4.47 GPa; υ12 = 0.33; ρ = 1600 kg/m3. The results of 
present study are in good agreement with Kouchakzadeh’s results.  

Table 1. Comparison of lowest frequency parameter of joined cross-ply laminated conical-conical shells 
for various types lamination sequences and cone angles (FC boundary conditions). 

No 
Layers/ 

cone angles α1 = 600
; α2 = 300

 
Kouchakzadeh [13] CEM 

Errors (%) 
CEM-[13] 

1 [0,90] 0.0339(4) 0.0341 0.59 

2 [90,0] 0.0338(4) 0.0340 0.59 

3 [0,0,0] 0.0231(4) 0.0231 0 

4 [0,90,0] 0.0302(4) 0.0303 0.33 

5 [0,0,90] 0.0294(4) 0.0295 0.34 

6 [0,90,90] 0.0447(4) 0.0447 0 

7 [90,90,0] 0.0454(4) 0.0453 0.22 

8 [90,90,90] 0.1303(3) 0.1313 0.76 

9 [0,90]2 0.0426(4) 0.0427 0.23 

10 [0,90]S 0.0367(4) 0.0369 0.54 

11 [90,0]2 0.0426(4) 0.0428 0.46 

12 [90,0]S 0.0476(3) 0.0477 0.21 

1 [0,90] 0.0274(4) 0.0281 2.49 

2 [90,0] 0.0273(4) 0.0281 2.85 

3 [0,0,0] 0.0152(4) 0.0157 3.18 

4 [0,90,0] 0.0210(4) 0.0216 2.78 

5 [0,0,90] 0.0227(4) 0.0233 2.58 

   Kcon+fluid 

    Kcon+fluid 
K(ω)m  = 

Kcon+fluid 
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6 [0,90,90] 0.0378(4) 0.0382 1.05 

7 [90,90,0] 0.0380(3) 0.0381 0.26 

8 [90,90,90] 0.0999(3) 0.1010 1.09 

9 [0,90]2 0.0336(3) 0.0339 0.88 

10 [0,90]S 0.0273(4) 0.0279 2.15 

11 [90,0]2 0.0332(3) 0.0335 0.90 

12 [90,0]S 0.0368(3) 0.0371 0.81 

4.2. Results and discussion 

The above formulation is used to compute natural frequencies for a Free-clamped joined 
cross-ply laminated composite conical-conical-conical shells containing fluid: L/R4 = 1;                   
h/R4 = 0.01; h = 2 mm; L1 = L2 = L3 = L; α1 = 600, α2 = 450, α3 = 300; E1 = 135 GPa; E2 = 8.8 GPa; 
G12 = 4.47GPa; υ12 = 0.33; ρ = 1600 kg/m3; layers [00/900], [00/900/00], [00/900/00/900]. The 
effects of fluid level and the number of layers on fundamental frequencies of free-clamped 
laminated composite joined conical-conical-conical shells containing fluid are illustrated in 
Table 2. 

Table 2. The fundamental frequency ω (Hz) of joined cross-ply laminated conical-conical-conical shells 
containing fluid,  n = 1 (FC boundary conditions). 

Fluid 
Level 

m Configuration 
 [0/90] 

Configuration 
[0/90/0] 

Configuration 
 [0/90/0/90] 

% Reduction  
with respect to empty 

[0/90/0/90] shell 

H = 0 

1 595.1 576.4 597.7 - 
2 395.9 396.2 400.0 - 
3 261.0 273.0 271.0 - 
4 208.6 247.6 237.2 - 
5 226.7 219.3 294.0 - 

H = 0.5H1 

1 507.0 512.7 525.0 12.16 
2 358.5 366.1 365.8 8.55 
3 246.2 259.5 256.0 5.54 
4 200.7 236.8 225.8 4.81 
5 222.3 217.9 273.7 6.90 

H = H1 

1 412.0 387.6 414.1 30.72 
2 271.3 269.4 273.7 31.58 
3 191.1 198.7 197.1 27.27 
4 162.4 185.4 177.7 25.08 
5 190.9 202.3 213.3 27.45 

H = H1+0.5H2 

1 289.6 272.6 290.5 51.40 
2 188.5 187.1 189.8 52.55 
3 141.5 146.6 145.5 46.31 
4 126.9 143.3 137.5 42.03 
5 151.7 167.9 166.0 43.54 

H = H1+H2 

1 273.0 259.6 273.8 54.19 
2 183.9 182.8 185.0 53.75 
3 137.1 143.0 141.5 47.79 
4 103.7 120.7 115.7 51.22 
5 130.4 134.7 148.8 49.39 
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H = H1+H2+0.5H3 

1 219.8 211.4 220.5 63.11 
2 155.9 154.9 156.6 60.85 
3 105.1 111.3 109.4 59.63 
4 76.4 89.6 86.0 63.74 
5 104.6 107.2 121.0 58.84 

H=H1+H2+H3 

(fully) 

1 223.7 216.8 224.4 62.46 
2 152.5 152.3 154.0 61.50 
3 93.7 98.3 97.6 63.99 
4 72.5 86.1 83.4 64.84 
5 78.0 74.9 102.2 65.24 

Next, natural frequencies are calculated for a Free-clamped joined cross-ply laminated 
composite conical-conical-conical shells containing fluid: L/R4 = 1; h/R4 = 0.01; h = 2 mm;              
L1 = L2 = L3 = L; α1 = 450, α2 = 300, α3 = 150; E1 = 135 GPa; E2 = 8.8 GPa; G12 = 4.47 GPa; υ12 = 
0.33; ρ = 1600 kg/m3; layers [00/900], [00/900/00], [00/900/00/900]. The effects of cone angles on 
fundamental frequencies of free-clamped laminated composite joined conical-conical-conical 
shells containing fluid are illustrated in Tables 2-3. 

Table 3. The fundamental frequency ω (Hz) for joined cross-ply laminated conical-conical-conical shells 
containing fluid, n = 1. 

Fluid 
Level 

m  Configuration 
 [0/90] 

Configuration 
[0/90/0] 

Configuration 
 [0/90/0/90] 

% Reduction  
with respect to empty 

[0/90/0/90] shell 

H = 0 

1 787.4 780.9 787.8 - 

2 520.7 525.2 526.6 - 

3 328.5 337.8 338.6 - 

4 249.0 283.2 286.9 - 

5 245.8 227.1 327.3 - 

H = 0.5 H1 

1 620.9 609.7 635.4 19.35 

2 438.9 447.0 446.6 15.19 

3 298.4 310.0 307.9 9.07 

4 237.4 270.7 267.4 6.80 

5 241.8 225.8 300.6 8.16 

H = H1 

1 499.1 470.4 500.3 36.49 

2 310.5 306.9 312.2 40.71 

3 214.5 218.5 219.1 35.29 

4 179.4 195.1 193.1 32.69 

5 201.6 205.6 220.1 32.75 

H = H1+0.5H2 

1 342.2 324.7 342.7 56.50 

2 210.6 208.6 211.4 59.86 

3 155.0 157.6 157.9 53.37 

4 136.4 147.0 145.4 49.32 

5 157.8 166.8 169.0 48.37 
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H = H1+ H2 

1 322.1 271.7 322.4 59.08 

2 204.9 186.6 205.5 60.98 

3 150.2 156.6 153.6 54.64 

4 110.1 111.3 121.9 57.51 

5 136.9 122.7 154.7 52.73 

H = H1+H2+0.5H3 

1 258.1 251.1 258.2 67.23 

2 174.0 173.4 174.4 66.88 

3 116.1 120.8 119.9 64.59 

4 83.9 93.8 93.5 67.41 

5 114.0 111.9 131.7 59.76 

H = H1+H2+H3 

(fill-fluid) 

1 257.2 252.5 257.2 67.35 

2 168.2 169.3 170.2 67.68 

3 102.4 105.4 105.7 68.78 

4 76.4 86.2 88.1 69.29 

5 78.2 72.1 104.0 68.22 

The effects of fluid level, cone angles and the number of layers on fundamental frequencies 
of free-clamped laminated composite joined conical-conical-conical shells containing fluid are 
illustrated by the Tables 2-3 and Figures 2-3.  

The result show that, natural frequency of composite joined conical-conical-conical shells 
containing fluid reduces as fluid level increases, filled fluid can reduce significantly the natural 
frequency of a laminated composite joined conical-conical-conical shells containing fluid. 
Natural frequency of composite joined conical-conical-conical shells containing fluid reduces 
when the cone angles increase. Increase number of layers in constant thickness, increases natural 
frequency of composite joined conical-conical-conical shells containing fluid. In addition, the 
use of 900 layers as outer ones increase the rigidity of the structure and results in higher values of 
frequency. 

 
Figure 2. Effect of fluid level on fundamental frequencies of free-clamped laminated composite joined 

conical-conical-conical shells containing fluid. 
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Figure 3. Effect of cone angles on fundamental frequencies of free-clamped laminated composite 
joinedconical-conical-conical shells containing fluid. 

5. CONCLUSIONS 

Based on the numerical results presented in this paper, the following conclusions may be 
drawn: 

Continuous Element Method can be used to calculate natural frequencies of thick joined 
cross-ply laminated joined conical-conical-conical shells containing fluid. 

The filled fluid can reduce significantly the natural frequencies of thick joined cross-ply 
laminated joined conical-conical-conical shells. 

Natural frequency of composite joined conical-conical-conical shells containing fluid 
reduces as the cone angles increase. 

Natural frequency of composite joined conical-conical-conical shells containing fluid 
increases when number of layers increase. 

The present Continuous Element model can be expanded to solve the vibration problem of 
joined composite conical-conical-conical shell containing fluid on foundations. 
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