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ABSTRACT

In this paper, a new eight-unknown shear deformatieory is developed for bending and
free vibration analysis of functionally graded pkby finite element method. The theory based
on full twelve-unknown higher order shear deformattheory, simultaneously satisfy zeros
transverse stresses at top and bottom surface @id&€s. A four-node rectangular element with
sixteen degrees of freedom per node is used. FPogssatios, Young’'s moduli and material
densities vary continuously in thickness directiancording to the volume fraction of
constituents which is modeled as power law funetidgesults are verified with available results
in the literature. Parametric studies are perforrfad different power law index, side-to-
thickness ratios.

Keywords:functionally graded plate, finite element methoehding, vibration analysis.

1. INTRODUCTION

Since it was invented by Japanese scientists i 198 functionally graded materials
(FGMs) are increasingly and widely used in mangldB, such as aerospace, marine,
mechanical, and structural engineering due to dgaatages compared to classical fiber-
reinforced laminated composites. The typical FGMmposed of ceramic and metal materials.
The ceramic composition offers thermal barrier @fend protects the metal from corrosion and
oxidation, and the metallic composition providesMr@®ughness and strength.

For dynamic and static analysis of functionally dga plates and shells, many plate
theories are developed. A review of shear defoonatieories for isotropic and laminated plates
was carried out by Ghugal and Shimpi [2] and Khaneéa al. [3]. Focus on modeling of
functionally graded plates and shells, Thai Huudrad Kim Seung-Eock [4] reviewed various
theoretical models to investigate their mechanietavior. The classical plate theory (CPT)
based on Kirchhoff assumptions and ignores thestemse shear deformation effect gives
appropriate results for thin plates. First-ordeeashdeformation theory (FSDT) takes into
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account the transverse shear deformation effectnaedls a shear correction factor which is
difficult to determine due to its dependence on ynparameters. To overcome the weaknesses
of FSDT, the higher-order shear deformation theoai® proposed.

A comprehensive review of the various methods eyguldo study the static, dynamic and
stability behavior of functionally graded plateshdze found in work of Swaminathan et al. [5].
The review focuses on comparing the stress, vidmmaéind buckling characteristics of FGM
plates using different theories. Based on thirdeordhear deformation theory with five
displacement unknowns, Reddy [6] developed anallyaod finite element solutions for static
and dynamic analysis of functionally graded rectdagplates. El-Abbasi and Meguidin [7]
used a new thick shell element to study the thelastie behavior of functionally graded plates
and shells. They extended the four-nodded sevearer shell element to account for the
varying elastic and thermal properties, as welthestemperature boundary conditions on both
faces of FG plates and shells

Oyekoya et al. [8] developed Mindlin-type elememid Reissner-type element for the
modelling of functionally graded plate subjectedbteckling and free vibration. The Mindlin-
type element formulation is based on averagingrafgverse shear distribution over plate
thickness using Lagrangian interpolation. The Rais$ype element formulation is based on
parabolic transverse shear distribution over pthtekness using Lagrangian and Hermitian
interpolation. Talha and Singh [9] studied freeratibn and static behavior of functionally
graded plates using higher order shear deformatiwory. A continuous isoparametric
Lagrangian finite element with 13 degrees of freeg@@mnode is employed for the modeling of
functionally graded plates. Thai Huu-Tai and ChanD-Ho [10] presented finite element
formulation of various four-unknown shear deformatiheories for the bending and vibration
analyses of functionally graded plates. To describe primary variables, a four-node
guadrilateral finite element is developed using hagian and Hermitian interpolation functions.
Three-dimensional graded finite element method daseRayleigh-Ritz energy formulation has
been applied to study the static response of ibk thnctionally graded plates [11].

In this paper, a new higher order displacement fi@lsked on twelve-unknown higher order
shear deformation theory is developed to analyedrite vibration and buckling of functionally
graded plates. The new eight-unknown higher ortdearsdeformation theory is derived from
the satisfaction of vanishing transverse sheassta¢ the top and bottom surfaces of the plate.
The finite element model is developed for bending &ee vibration analysis of power-law
functionally graded plates. A'@ontinuous four-node quadrilateral plate elemeith wixteen
degrees of freedom per node is employed. Lagrargiaar interpolation functions are used to
describe the in-plane displacements and the rotafimormals abowt, y axes; Hermitian cubic
interpolation functions are given for the transeedssplacement, rotation abautixis, higher-
order term of displacements and their first derorat

2. KINEMATICS

The twelve-unknown higher order displacement figldiven as follow [12]:

ux, ¥, 2= y(x y+ 8 ( x ¥+ zf Xy *€( ,Xy
V(X Y, D= y(x y+ 8,( x y Z{ X))y °€( ,X)y 1)
WX Y,z = wix yd+ & (xyr ZW xyt °a (,x,y)
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whereu, v, w denote the displacements of a point along thg, @) coordinatesu,, v,, w, are
corresponding displacements of a point on the raitpld,, &, and 6,are the rotations of the
line segment normal to the midplane about ykexis, x-axis andz-axis , respectively. The
functionsu, , vy, Wy, 8, 8, and &, are the higher order terms in the Taylor serigsassion
defined in the mid-plane.

For bending plates, the transverse shear stresgesr,, must be vanished at the top and
bottom surfaces. These conditions lead to the rem@nt that the corresponding transverse

strains on these surfaces be zero. FWQ[EX, y,igJ = yyz( X, y,i—g = 0, we obtain:

v, =—%Hz,y—h—829; ;000w )i,
Thus, the displacement field (1) becomes:
U=+ B, —2—22(6’2,x+ ¢, x)—é[ 6(6,+ w,)*+ W, J:
v=y, + 7, —2—22(92,y+ qe;y)—é[ o(6,+ w,)+ W ): 3)

wW=w + 2, + Z W+ 20,
i 4
with: ¢ :Z; (o} :F' or in matrix notation as

{u} =[H]{d}. 4

where:
) _ . _ _ ]
10 z-C2323 0 o%f 0 oi2 0 0—23 0 O—gz 0
- _2 - -
[A]=lo1 o ;8% 0 0 92 g 0Z g 0% o o £2
3 3 2 3 2
00 0 O 1.0 0z 0 0Z 0 072 0 0

{u} ={u,v}" displacement vector of any generic point within plete;

{d} :{UO’V()’ex’ey’V\()7V\6,x’V\6,y ’HZ ﬂz,xﬂzwvi\k()’\;\{)vxa\*/\ﬂyg 29 Zﬁ Z};—

Following strain - displacement relation, the n@mezstrains are given as:
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0 0 *
£x £>< Kx £>< Kx
o o . .
£y ‘gy Ky y Ky
0 0 *
£ £ K £ 0
N S A R AR S S (5)
yXy y>(<)y ny yxy KXY
o .
yXZ y)((JZ KXZ yXZ K XZ|
0 * *
yyz yz Kyz yyz K yZ
or:
{&} ={£°} +z{/(°} + zz{s*} + 23{/(*} ) (6)
where:

ol — 0 0 0 ol — .
{8 } —{é‘x,sy,sz,yxy} —{Uo, Vo, 0 U+ Vo,} :

{KS’KS’KS’KSV} ={ xnly y’ZW(: O y+0 y} ;

{6.6,6,7,) = {—%(HZ oGO, x),——;(é’ el )P (0,4t z)x} : (7)
{K;’K;’K*xy} = {_%(CZ (Hx ><+ WO,xx) + V\;On) ’__;( CZ(H \ y+ \NO y) + WO, y)’
(8)
—%(c2 (8., +6,,+2w, )+ zw;,xy)} ;
(Vo id =t 0w+ 0 }i{k0un"p ={ -0, -0 ), (©)
Verd ={-c(w +0)-c(w,,+0 }:{c .k }={6.,0 ) (10)

3. CONSTITUTIVE EQUATION

Consider a rectangular FGM plate with the lengthwvidth b, and thicknes$. Thex-, y-,
and zcoordinates are taken along the length, width, laeight of the plate, respectively, as
shown in Fig. 1. The material properties of FGMt@taare assumed to vary continuously
through the thickness of the plate by a power lgtridution as [6]:

p
V(z):(\/c—\(n)(;+i) + 11

whereV(2) represents the effective material property suclyaung's modulug, mass density
p, and Poisson's ratio; subscriptsm and c represent the metallic and ceramic constituents,
respectively; ang is the volume fraction exponent.
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X

Figure 1 Geometry of FG plate with positive set reference axes.

The stress-strain relationship for the FGM plate loa written as:

o] [Q: Q. Qs 0 0 O0ffs
y Qi Qp Qp O 0 01|¢

Q

O, _|Q1 Q2 Qs 0 0 0] fa
o(lo 0 0 o ol or: {g} =[D|{ &} (12)
g, 0 0 0 0 Q55 0 Ve

ﬁQ
o
o

0 0 0 Q|| V2
in which:

Q :Q :Q :—(1_V)E Q :Q :Q :—E :
11 22 33 (1+V)(1_ 2/)’ 44 55 66 2(l+ V)’

Q12 - Q23 - Q13_ (l+ V)(l_ 2/) Q21 Q32 Q31

4. FINITE ELEMENT FORMULATION

A C' continuous four-node quadrilateral plate bendifement with sixteen degrees of
freedom per node is used (Fig. 2). The Lagrangieeat interpolation functions\, (¢,7) are

employed to describe the variablagy,,6,,6, and the Hermitian cubic interpolation functions

H, (£.7) are employed to describe the variablgsw,,,W,,,8,.8, .8, ,,Wy, W ., W, 0 .
H;,X’gz y AT
4(-1,1) 3(1,1)
¢
1(-1,-1) 2 (1,-1)

Figure 2 Node number of four-node quadrilateral elemeritsimatural coordinate.
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4
{uo;vo;é?x;ey}T :; Ni{ Uyi; Vo By ;Hyi}T:[EJ{qe}; (13)

M»

iH{%% W 336,68 i Vi Vi 0,0, 8 4 1 =[B e} (14)

=1

{Wo 6, W,; Z}

1
N

T

HI] x{ WOI WOI X! W0| y? 92|02| xen )ﬁW0| W0| X WO ygng zi xg ZI}/ =|:B (15)

M»
Me

{WOX Hsz0x92>}

1
iy

M» s
M

i

H; {WOi'W0|>< W0|y9z192|><921y'W0| W0|>< W(] ygzvé zw(g 21}/ :[B qe (16)

i, y

{WOy szwoygz}

._.
i

i=1 j=

For rectangular elements, the interpolation fumgity, and H; for thei-th node are given
in terms of the natural coordinates as:

=%(1+5f)(1+’7i/7); (17)

Hy =51+ 68 (1+nn)(2+ £ +nn - ~')

Ha =28 (£€-1)(Lenn) (14 £2€7) (18)
His =§’7i (nn-1)(1+§¢)(1+£2¢7).

{a} ={q. &%, @ q} " is element nodal displacement vector.

I * T.
{ql} ={u0i 'V(] 'Hxi 'Hyi ’V\(] 'V\éxi ’V\()yi 'ezi ’ezxi ﬂz yi ’V\6 ’V\()xi 'VVM ezi 02 Xxi ez yi} IS nOdal
displacement vector corresponding-th node.
The displacement vector at any generic point cawriigen as:

{d} =[BJa} (19)
where:[ B|= [[ﬁJ,[EZJ [ Bz, ,[_Bz3ﬂT is the shape function matrix.
The strain vector is expressed by:
{e =[Ll{a} =[L][ B a} =[E{ a}- (20)
[L] is differential operator matriy,B] =[L][E] is the strain - displacement matrix.

The Hamilton’s principle can be expressed as:

ozf(au +OW - JT)dt (21)

and applying for each element:
The strain energy of the FGM plate element is givgn
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u ——I ehav=—[{a) (B[ O & o} av=—1 &"[ K{ . (22)

V

e

The external work done on the plate element byilliged applied load may be written as:

w,=-[{d"{ f} da=-[{ " [B{ b dx-{ ¢'{ &. (23)
A A
and {f} is mechanical load vector.

The kinetic energy of the FGM pIate can be exprksse

B OIS TR T E X @ TS D

Substituting Eqgs. (11b-11d) into Eq. (11a), finikeneent stiffness equation is obtained as:

[M.]{a +[Kd{ad ={F} (25)
where K¢, [M¢] and {F¢} are the element stiffness matrix, element masgirmand element

nodal load vector, dg} is hodal displacement vector, al{«ie} is the second derivative of the

displacements of the element with respect to time.
By assembling the element matrices, the globallieguim equations for the plate can be

obtained as
[KH{} +[M{ & =[F]. (26)

where K], [M] and {F} are the global stiffness matrix, mass matrix andal load vector of the
structure, Q} is nodal displacement vector, anfb'} is the second derivative of the
displacements of the structures with respect te.tim

The generalized governing equation (26) can be @yepl to study the free vibration and
static analysis by dropping the appropriate tersis a

For linear static analysis:
[K{<}={F}. 27)
For free vibration analysis, the frequency of ndtwibration can be obtained from the
bellow eigenvalue problem:
([x]-e7[M])}{Q} =[0]. (28)

This equation can be solved after imposing boundanyditions of the structure, with
eigenvalues solving common problems.

The boundary conditions for an arbitrary edge vsitmply supported and clamped edge
conditions are:

Clamped (C):
U=V=6,=6,=w=w,=w,=60,=60,=6,~wWw=VW~W7~0 76,70,
atx=0; aand/ =0; b.
Simply supported (S):
vN=6,=w=w, =6,=6, =w=w =6,=6, atx=0;a.
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UOZHX =WO:VV0,x:02:02,x: V\%: V%,ngzzgz,:atyz(); b

5. NUMERICAL RESULTS

Matlab codes for finite element model have beett boi numerical investigation. After
checking convergence, a 10x10 mesh of four-nodmaegie has been used in the computation.
The selective integration scheme based on Gaushajuee rules, with 3x3 for membrane,
coupling, flexure and inertia terms and 2x2 forashterm. A rectangular FG plates with different
boundary conditions as shown in Fig. 3 are consdldF-free, S-simply supported, and C-
clamped). Material properties of the P-FG plate giseen in Table 1. For convenience, the
following dimensionless forms are used [13]:

Table 1.Material properties used in the P-FG plate [13].

Properties E (GPa) v p (kg/nT)
Metal Aluminum (Al) 70 0.3 2702
Ceramic  Alumina (AlO3) 380 0.3 3800
Aky Aky Aky
-
~] L~ -] L~ -]
> C 4 C 4
> 2 4 C 4
4 Z 4 Z 4
7 3 7 3 7 X
ccce scsc sssc
Aky Aky Aky Aky
g
g
z
g
X X X X
SSSS SFSC SFSS SFSF

Figure 3 Boundary conditions of plates.
Example 1.Validation study

Dimensionless central deflectiong of isotropic square platep € 0) with various values of
thickness ratios/h are presented in Table 2. The present resultsaanpared with the solutions
given by Thai, H.T., & Choi, D.H. [10] based on faunknown shear deformation theories
(zeros shape functionFSDT) and the analytical solutions reported by ZenKadf based on a
mixed first-order shear deformation theory (MPT)cdn be seen that the present solution is in

409



Nguyen Van Long, Tran Huu Quoc, Tran Minh Tu

close agreement with those solutions (errors <0Q.2 %

Dimensionless fundamental frequenciesf simply supported (SSSS) square FG plates (
0) with various values of thickness ratat and power law indeg are presented in Table 3. The
comparison of the dimensionless fundamental frezjesrof present results shows good agreement
with analytical solutions of Thai H. T., & Kim &. [12] based on simple higher-order theory,
and finite element results of Thai H. T., & ChoitD.[9] based on four unknowns shear
deformation theories.

Table 2.Dimensionless deflectiow of isotropic square plates under uniform loads.

Boundary condition

ah Method
SCSC SSSC SSSS SFSC SFSS SFSF
5 MPT [14] 0.3021 0.3827 0.4904 0.7139 0.9072 09453
FSDT [13] 0.2837 0.3686 0.4929 0.6945 0.9146 1.4794
Present 0.2833 0.3565 0.4526 0.6958 0.8837 1.5742
10 MPT [14] 0.2209 0.3059 0.4273 0.6065 0.8224 5934
FSDT [13] 0.2220 0.3062 0.4298 0.6121 0.8314 1.3722
Present 0.2550 0.3337 0.4390 0.6625 0.8629 1.5406
25 MPT [14] 0.1965 0.2830 0.4096 0.5737 0.7981 5431
FSDT [13] 0.2047 0.2887 0.4121 0.5890 0.8080 1.3422
Present 0.2005 0.2816 0.3961 0.5822 0.8005 1.4487
10,000 MPT [14] 0.1917 0.2785 0.4062 0.5667 0.7931 1.3094
FSDT [13] 0.2014 0.2853 0.4087 0.5847 0.8036 1.3365
Present 0.1919 0.2736 0.3905 0.5694 0.7918 1.4324
JE S
—
===
Figure 4.Variation of dimensionless deflection Figure 5 Variation of dimensionless
W versus power law indgxof Al/AI203-1 deflection W versus thickness ratagh of
square plates under uniform load#(= 10). Al/AI203-1 square plates under uniform loads
(p=2).
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Dimensionless fundamental frequency

Figure 6.Variation of dimensionless fundamental

frequency@ versus power law indgxof
Al/Al ,0O5 square platesa(h = 10).

0.25

o
R

0.15

Dimensionless fundamental frequency

Figure 7.Variation of dimensionless
fundamental frequencyg versus thickness
ratio a/h of Al/Al ,O3 square platep(= 2).

Table 3 Dimensionless fundamental frequengy of SSSS Al/AJO; square plates.

Power law index (p)

a/h Method 0 05 1 7 0
5 TSDT [14] 0.2113 0.1807 0.1631 0.1378 0.1301
FSDT [13] 0.2108 0.1802 0.1629 0.1396 0.1322
Present 0.2280 0.1949 0.1765 0.1504 0.1420
10 TSDT [14] 0.0577 0.0490 0.0442 0.0381 0.0364
FSDT [13] 0.0576 0.0489 0.0441 0.0382 0.0365
Present 0.0591 0.0502 0.0457 0.0402 0.0383
20 TSDT [14] 0.0148 0.0125 0.0113 0.0098 0.0094
Present 0.0154 0.0130 0.0119 0.0105 0.0100
Table 4 Dimensionless deflectiow of Al/Al,O; square plates under uniform loads.
alh o Boundary condition
CCcCC SCSC SSSC SSSS SFSC SFSS SFSF
5 0 0.2064 0.2833 0.3565 0.4526 0.6958 0.8837 2574
0.5 0.3048 0.4225 0.5379 0.6909 1.0545 1.3526 2.408
1 0.3897 0.5418 0.6919 0.8911 1.3602 1.7498 3.1272
2 0.5090 0.7053 0.8956 1.1463 1.7574 2.2511 4.0427
5 0.6757 0.9205 1.1406 1.4234 2.2019 2.7611 4.9461
10 0.7802 1.0537 1.2921 1.5952 2.4780 3.0770 5.5048
10 0 0.1800 0.2550 0.3337 0.4390 0.6625 0.8629 06.54
0.5 0.2720 0.3875 0.5104 0.6756 1.0148 1.3290 8.367
1 0.3424 0.4899 0.6491 0.8642 1.2974 1.7087 3.0590
2 0.4280 0.6131 0.8144 1.0868 1.6364 2.1622 3.9014
5 0.5271 0.7489 0.9827 1.2960 1.9656 2.5738 4.6574
10 0.5999 0.8469 1.1016 1.4402 2.1933 2.8499 5.1563
20 0 0.1393 0.2056 0.2862 0.3996 0.5895 0.8056  62.45
0.5 0.2135 0.3158 0.4411 0.6175 0.9085 1.2445 4.244
1 0.2725 0.4039 0.5659 0.7945 1.1696 1.6075 29111
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2 0.3429 0.5086 0.7136 1.0029 1.4810 2.0400 3.7224
5 0.4088 0.6042 0.8439 1.1809 1.7518 2.4059 4.4104
10 0.4536 0.6689 0.9309 1.2984 1.9302 2.6432 4.8511
50 0 0.1297 0.1940 0.2756 0.3919 0.5727 0.7942 9543

0.5 0.2001 0.2996 0.4259 0.6062 0.8848 1.2280 8.220

1 0.2566 0.3846 0.5478 0.7810 1.1413 1.5877 2.8827
2 0.3231 0.4848 0.6913 0.9863 1.4460 2.0156 3.6873
5 0.3801 0.5698 0.8118 1.1570 1.7013 2.3708 4.3596
10 0.4181 0.6263 0.8913 1.2690 1.8679 2.6000 4.7882

Example 2. Effect of power law inde)p and side-to-thickness ratah on the dimensionless
central deflectiornw.

In this example, the square FG plate with differbatindary conditions under uniformly
distributed load is considered. The calculatededsionless central deflection with various power
law indexp = 0; 0.5; 1.0; 2; 5; 10 aradh = 5; 10; 20; 50 are given in Table 4. Figures d Bushow
the variation of power law indep and side-to-thickness rata'h versus dimensionless central
deflection. It is found that the dimensionless @ntleflection increases as power law ingex
increases, while dimensionless central deflectionedses as side-to-thickness ratio increase With al
types of boundary conditions.

Table 5.Dimensionless fundamentab frequency of Al/A}O; square plates.

Boundary condition

ah p

CCcCC SCSC SSSC SSSS SFSC SFSS SFSF
5 0 0.3422 0.2896 0.2562 0.2280 0.1480 0.1386 (.109
0.5 0.2970 0.2503 0.2201 0.1949 0.1263 0.1180 B.093
1 0.2702 0.2274 0.1996 0.1765 0.1143 0.1067 0.0840
2 0.2432 0.2051 0.1806 0.1602 0.1037 0.0968 0.0758
5 0.2174 0.1850 0.1651 0.1482 0.0962 0.0903 0.0706
10 0.2052 0.1755 0.1575 0.1420 0.0924 0.0869 0.0682
10 0 0.0984 0.0805 0.0684 0.0591 0.0312 0.0300 5@.02
0.5 0.0843 0.0688 0.0582 0.0502 0.0267 0.0256 6.021
1 0.0775 0.0631 0.0532 0.0457 0.0248 0.0238 0.0197
2 0.0714 0.0582 0.0490 0.0421 0.0233 0.0222 0.0182
5 0.0661 0.0543 0.0461 0.0398 0.0219 0.0209 0.0172
10 0.0630 0.0519 0.0442 0.0383 0.0209 0.0200 0.0165
20 0 0.0275 0.0220 0.0182 0.0154 0.0080 0.0077  6@.00
0.5 0.0234 0.0187 0.0154 0.0130 0.0069 0.0066 6.005
1 0.0214 0.0171 0.0141 0.0119 0.0064 0.0061 0.0050
2 0.0197 0.0158 0.0130 0.0109 0.0060 0.0057 0.0046
5 0.0187 0.0150 0.0123 0.0104 0.0057 0.0054 0.0044
10 0.0180 0.0144 0.0119 0.0100 0.0054 0.0052 0.0042
50 0 0.0046 0.0036 0.0030 0.0025 0.0013 0.0012 10.00
0.5 0.0039 0.0031 0.0025 0.0021 0.0011 0.0011 0.000
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1 0.0035 0.0028 0.0023 0.0019 0.0010 0.0010 0.0008
2 0.0033 0.0026 0.0021 0.0018 0.0010 0.0009 0.0007
5 0.0031 0.0025 0.0020 0.0017 0.0009 0.0009 0.0007
10 0.0030 0.0024 0.0019 0.0016 0.0009 0.0008 0.0007

Example 3. Effect of power law indexp and side-to-thickness rat@'h on the fundamental
frequencyd

Table 5 presents the dimensionless fundamentaldrexyfor various power law indeg = 0; 0.5;
1.0; 2; 5; 10 ané/h = 5; 10; 20; 50. Different boundary condition &ach case is considered. The
variation of dimensionless fundamental frequenessuspower law indeXp and side-to-thickness
ratioa/his illustrated in Figures 6 and 7.

It is observed that, for all types of boundary dtad, dimensionless frequencies decreases
as power law index and side-to-thickness ratioresses. Effect of boundary conditions is clearly
too, the dimensionless frequency of FG plate withriwary conditions CCCC is highest, and the
lowest with SSSS boundary conditions.

6. CONCLUSIONS

In this study, the new eight-unknown shear defolwnatheory is used to analyze the
bending and free vibration of rectangular fuctibngraded plates by finite element approach.
The governing equations and boundary conditionsdaréved by employing the Hamilton's
principle. Validation studies have been carried ttconfirm the accuracy of the present
formulation. The obtained result shows a good agese with those available in the literature.
Influence of power law index, side-to-thicknessaatn bending and vibration responses of FG
plates have been investigated and discussed. Meight unknowns shear deformation theory
is accurate in predicting static and free vibratiesponses of FG plates.
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TOM TAT

PHAN TICH UON VA DAO BONGTU DO CUA TAM CO QO TiNH BIEN THIEN (FGM)
BANG PHUONG PHAP PHAN TU HUU HAN DUA TREN Li THUYET TAM VOI 8 AN

CHUYEN VI
Nguyén Vin Longd, Tran Hitu QUu5¢?, Tran Minh T(

Truong Caodang Xay ang & 1, Trung \in, Tir Liém, Ha Ni
“Pai hoc Xay dng, 55 Giii Phong, Qdn Hai Ba Teng, Ha N

"Email: thquoc@gmail.com

Bai baodé xuat i thuyét tim bién dang cit v6i 8 thanh phn chuyén vi dé phan tich Gn

va daodong riéng éa tim c6 @ tinh bén thién (FGM) ling phrong phap phn tir hitu han. Li
thuyét nayduoc phat trén trén © so li thuyét tim bac badiy du, dong thyi thoa mandiéu kién
tring suit ngang 4i mat trén va nit dudi cia im king khong. M6 hinh pn tor hiru han s dung
phan tir tr giac 4 nat, i nat 16 kc tr do. Médun dan roi kéo (nén), B sb Poisson va kbi
lwong riéng @a \at liéu bién thién @c theo chdu day m theo quy lat ham nii. Két qua tinh
dugc so sanh & cac Kt qua da cong b caa mbt b tac gi khac cho thy do tin ciy caa Ii thuyét
va mé hinh tinkdd xay drng. Anh hrong aia ch s ti 18 thé tich, 1 18 kich thrgc hinh hc... da
duoc khao sat.

Tir khod:tdm FGM, PTHH, daddng tr do, ubn, két cAu tim.
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