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ABSTRACT 

In this paper, a three stages monolithic low noise amplifier for T/R module application is 
presented. This amplifier is fully integrated on 0.15 µm GaAs pHEMT technology and achieves 
a wide bandwidth from 6 to 11 GHz. Within this band, the LNA has the minimum of 1.3 dB 
noise figure and over 25 dB small signal gain. The output third-order intercept point is over 30 
dBm and the 1 dB compression point (P1dB) is 16 dBm at the output. 
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1. INTRODUCTION 

 Transmit/receive module (T/R module) is one of the most important elements in a radar 
system. A phased array antenna in a radar system uses thousands of such T/R modules. Figure 1 
shows a block diagram of a T/R module. For the receiving function of T/R module, a low noise 
amplifier (LNA) is the key component that affects a lot of important system parameters such as 
noise figure (NF), gain, bandwidth (BW), spurious free dynamic range (SFDR), and spectral 
purity... The emerging in applications of radar systems, especially at X-band and Ku-band 
frequencies, necessitates wide frequency range, low noise, high gain, and high power T/R 
modules. Hence, a low noise, wideband, high gain, and high power LNA is highly demanded for 
next generation radar systems. 

Recently, there are a lot of publications about X-band LNA. Some of them were designed on 
silicon substrate technology [1- 3]. This technology can provide good noise figure and frequency 
performance with small dimension factors. However, some other crucial components in T/R 
module, such as power amplifier and switch, need to be developed with higher power and 
reliability that the silicon substrate technology cannot achieve. Gallium Arsenide (GaAs) 
technology, on the other hand, can provide high reliability and higher power density. The ref. [4] 
presents a 8 to 10 GHz LNA on 0.25 µm GaAs pHEMT with an output P1dB of 14 dBm. Besides, 
the LNA has a minimum noise figure of 1.4 dB and the gain of 29 dB. In [5], the monolithic 
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GaAs LNA achieves a very low noise figure of 0.5 dB and 30 dB gain. The frequency range of 
this LNA is, however, only from 7 to 10 GHz and the output P1dB is 10 dBm. 

 
Figure 1. Block diagram of a T/R module. 

 

This paper proposes a design of wideband, low noise, high gain, high power, and linearity 
monolithic LNA on 0.15 µm pHEMT technology. The LNA achieves a bandwidth of 6 to 12 
GHz. In this operating frequency band, the proposed design has the minimum NF of 1.3 dB and 
over 25 dB small signal gain. The output 1 dB compression point is 16 dBm and the maximal 
third-order intercept point (OIP3) is 33 dBm. 

2. CIRCUIT DESIGN AND TECHNOLOGY 

2.1. Devices technology and characteristic 

 This LNA is designed on 0.15 µm double recess GaAs Pseudomorphic High Electron 
Mobility Transistors (pHEMT) process from Win Semiconductor [6]. This process is built on 100 
µm GaAs substrate and demonstrates good device level performance with ft of 90 GHz, power 
density of 860 mW/mm at 29 GHz, more than 10 dB gain per transistor and 50 % power added 
efficiency. The process exhibits high breakdown voltages of 16 V and therefore provides 
substantial operating margin for high reliability. It also allows a good minimum noise figure of 
about 0.5 dB at 10 GHz for the 2 ×75 µm gate width transistor. 

2.2. LNA topology 

 

Figure 2. LNA topology. 

 Figure 2 shows the designed LNA topology. This LNA consists of three transistor stages in 
order to produce enough gain. The first two transistor stages are designed to have a low noise 
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figure, whereas the last stage is optimized for gain, output power and stability. Choke inductors 
are used at all DC bias circuits to prevent radio frequency signal leakage. The LNA utilizes 
source degeneration matching technique with common source topology in order to achieve good 
return loss and low noise matching over a wide bandwidth simultaneously. 

2.3. Design for low noise figure 

 

Figure 3.Inductive source degeneration topology and its small signal equivalent circuit. 

 As we mentioned in the previous section, the first two stages is matched for low noise 
figure. There are several matching techniques such as resistive termination, series-shunt 
feedback, input matched LNA (without degeneration inductor)... The first two techniques allow 
very good return loss. However, they are still noisy due to resistive noise source and attenuate 
signal. The input matched LNA technique delivers better noise figure matching but it's hard to 
achieve good return loss at the same time.  In [7], good return loss and noise performance can be 
achieved simultaneously by using inductive degeneration technique which has topology shown 
in Figure 3. From its small signal equivalent circuit, the input impedance Zin is calculated 
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where γ is empirical constant and equals 2/3 for long channel. (1) and (2) show that good return 
loss and noise matching can be obtained simultaneously by having large Lg and choosing 
appropriate Ls. Nevertheless, Ls should be selected carefully, because available gain is reduced 
with large Ls. In the first two stages of this design, the source degeneration inductor Ls is selected 
about 0.5 nH. [7] also states that a possible minimum noise factor for a device, Fmin, is only 
achieved when a particular reflection coefficient, Γs= Γopt is presented to the input 
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where F is the noise factor of a two port network; Fmin, rn, Γopt are noise parameters giving by the 
foundry or measured; Γs is the reflection coefficient at the input. 

 Therefore, after selecting Ls, the impedance of Γs = Γopt is searched by doing source-pull 
simulation at the gate of transistor. For this design, the impedance of 120 + j145 Ω is found and 
the input matching network is optimized near this optimum noise matching impedance. The gate 
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width of the transistors in the first and second stages is 150 µm. The transistors are biased at Vd1 = 
Vd2 = 2 V and Vg1 = Vg2 = -0.8 V with the drain current Id1 = Id2 = 22 mA. 

2.4. Design of the third stage 

 Unlike the first two stages, the third stage of this LNA is designed for gain, output power 
and linearity. In order to have high output power and linearity, the bias point of this stage is 
moved to Vd3 = 5 V and Vg3 = -0.6 V for the drain current Id3 = 37 mA. The total gate width of 
this stage is also 150 µm. In this stage, a very small source degeneration inductor is used to 
enhance the stability of the whole circuit. Besides, this inductor also decreases third order inter-
modulation distortion (IMD3) and helps to improve the linearity as discussed in [8]. The output-
matching network is designed to balance between a good wideband S22, flat gain and high output 
power. 

3. THE LNA PROTOTYPE AND EXPERIMENTAL RESULTS 

 

Figure 4. LNA chip photograph. 

 Figure 4 is the picture of the fabricated LNA chip. The dimension of the LNA die is 1.2 
mm by 2.1 mm. At the LNA's input and output, ground-signal-ground (GSG) pads are placed for 
on-wafer measurement. Gate and drain of each transistor are connected to DC pads allowing to 
adjust bias point at each stage independently. At each DC pads, a small resistor and a bypass 
capacitor are attached to ensure for the stability and reliability. The coupling effects and parasitic 
of the layout are predicted by using electromagnetic simulator AXIEM of Microwave Office 
AWR [9]. As we can see in Figure 5, the measured small signal s-parameters of the LNA show 
that the operating frequency is from 6 to 11 GHz with over 25 dB small signal gain S21. The 
input return loss S11 and output return loss S22 are better than 6 dB in this band. The measured 
noise figure over operating frequency range is illustrated in Figure 6. The LNA has the noise 
figure of about 1.3 - 2 dB for the frequencies from 5.7 to 12 GHz. Figure 7 shows the large 
signal simulation of the LNA at 10 GHz. From Figure 7, the P1dB is at 16 dBm output power and 
-12.4 dBm input power. The OIP3 of this circuit is found by feeding 2-tones signal, which are 
separated by 10 MHz at the input. Figure 8 shows that the OIP3 is greater than 30 dBm from 8 to 
12 GHz and has maximal OIP3 of 33 dBm at 10 GHz. Table 1 summarizes the performance of 
this design and compares with some previous published GaAs LNAs. 
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Figure 5.Simulatedand measured small signal s-parameters of LNA. 

 
Figure 6. Measured noise figure. 

 
Figure 7.Output power versus Input power at 10 GHz. 

0

1

2

3

4

5

6

7

8

4
.9

5
.7

6
.4

7
.1

7
.9

8
.6

9
.3

1
0

.1

1
0

.8

1
1

.6

1
2

.3 1
3

1
3

.8

1
4

.5

1
5

.2 1
6

1
6

.7

N
oi

se
 f

ig
u

re
 (

dB
)

Frequency (GHz)

-20 -18 -16 -14 -12 -10
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

p1

-12.41
28.34 dB

-19.24
29.35 dB

-12.43
15.93 dBm

Input power (dB)

O
u

tp
u

t 
p

o
w

e
r 

(d
B

) P
o

w
e

r g
a

in
 (d

B
)



 
 
Broadband GaAs pHEMT LNA design for T/R module application  

589 

 

Figure 8.Output third-order intercept point versus frequency. 

Table 1. LNAs comparison. 

 
Frequency 

(GHz) 
Gain (dB) P1dB (dBm) 

OIP3 
(dBm) 

NF 
(dB) 

Chip Area 
(mm2) 

Process 

[10] 6 - 14 20 12 24 1.3 2.05×1.2 GaAs 

[11] 5 - 11 27 13 25 1.4 2.3× 1.35 GaAs 

[12] 7 - 11 26 1 N/A 1 1.5× 1 GaAs 

[13] 8 - 12 30 10 N/A 1.5 2.5× 1.5 GaAs 

[14] 3.2-14.7 34 N/A N/A 1.3 2.5× 1.5 GaAs 

This work 6 - 11 25 16 33 1.3 2.1× 1.2 GaAs 

4. CONCLUSIONS 

 A wideband X-band LNA integrated circuit have been designed using 0.15 µm GaAs 
pHEMT technology. In the frequency band from 6 to 11 GHz, the LNA achieves excellent 
performance with more than 25 dB gain and 1.3 - 2 dB noise figure. The output 1 dB 
compression power is 16 dBm and third-order intercept point is greater than 30 dBm. The LNA 
occupies 2.52 mm2 and is unconditional stable. 
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