Tap chi Khoa hoc va Céng nghé 54 (3) (2016) 430-447
DOI: 10.15625/0866-708X/54/3/6566

APPLICATION OF DATA ASSIMILATION FOR PARAMETER
CORRECTION IN SUPER CAVITY MODELLING

Tran Thu Ha'#*’ Nguyen Anh Sori, Duong Ngoc Hat %%
Nguyen Hong Phong 2

Ynstitute of Mechanics -VAST — 264 Doi Can and d&rt) Quoc Viet Hanoi, Vietnam
University of Engineering and Technology -VNU, 14X Thuy, Hanoi, Vietnam

*National University of Civil Engineering, 55 Giaiphg Str., Hai Ba Trung Hanoi

*Institute of Science and Technology -VAST 18 H&unmr Viet Hanoi, Vietham

"Email: tran_thuhal@yahoo.com
Received: 27 July 2015; Accepted for PublicatioMa&y 2016

ABSTRACT

On the imperfect water entry, a high speed slebdéely moving in the forward direction
rotates inside the cavity. The super cavity mo@skcdbes the very fast motion of body in water.
In the super cavity model the drag coefficient playpportant role in body's motion. In some
references this drag coefficient is simply chosgrdifferent values in the interval 0.8-1.0. In

some other references this drag coefficient isteniby the formulek = C,,(1+0)cos a with
o is the cavity numberg is the angle of body axis and flow directidy, is a parameter
chosen from the interval 0.6-0.85. In this paper dnag coefficientk = k1CD0(1+ 0') cosa is

written with fixed C,, =0.82 and the parametly is corrected so that the simulation body

velocities are closer to observation data. To fthd convenient drag coefficient the data
assimilation method by differential variation ipéipd. In this method the observing data is used
in the cost function. The data assimilation is ofh¢he effected methods to solve the optimal
problems by solving the adjoin problems and thedifig the gradient of cost function.

Keywords:data assimilation, optimal, Runge-Kutta methods.

1. INTRODUCTION

When slender body running very fast under watelofity is higher than 50 m/s) the
cavity phenomena is happened. Cavity may haveiatyaf cause. The most common example
is boiling water, where the vapor pressure is iaseel by raising the water temperature. In
hydrodynamics applications cavitation is the appeee of vapor bubbles and pockets inside
homogeneous liquid medium. This phenomenon occecause the pressure is reduced to the
vapor pressure limit. In this paper we will studyper cavity appearing by the very fast
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movement of slender body in water that makes umotied gun-launched slender body. Except
the body head called by cavitator is directly tanghwith water, the gas layer can be covered
partial or full body depending on the design of péakrm. The body rotates about its nose. The
form of body's nose can be differently chosen sashsharp, hemisphere, plate disk... For

simple calculation we choose cavitator formed keyglate disk with diameted, (Figure 1).

The body is consisted of two parts: the cone tapatinder part with the diametet .

L=L1:L1

- L is the length of the slender body;

L2 L1

- L, is the body's length of cylinder part

- L, is the body's length of cone top part

- d is the body's diameter

;
dc - d, the body's nose diameter

Figure 1 Slender body geometer.

In the super cavity model the following assumptians ([1, 2]):
- The motion of the projectile is confined to arma
- The slender body rotates about its nose ([1;- 4])
- The effect of gravity on the dynamics of this paglnegligible;

- The motion of the slender body is not influentsgdthe presence of gas, water vapor or
water drops in the cavity;

The super cavity problems are studied in [1, 2,13]: To study the motion problems of
slender body running under water there are bagicoaphes:

- The experimental approach consisting in obsendnd measuring motion by remote
sensing.

- The modeling approach based on mathematical moafethe flow and of the body
motion.

- The models of body's motion under water includee parameters that have not a clear
physical meaning because they are a syntheticgepiation of several physical effects such as
sub-grid turbulence that can't be explicit in thedel because of a necessary truncation for
numerical purposes.

None of these approaches is sufficient to pretlietevolution of body motion. They have
to be combined to retrieve the body motion undelewall the techniques used to combine the
information provided by observations and the infation provided by models are named by
Data Assimilation methods and have known an impor@development during these last
decades. The Data Assimilation method using difféaé variation is based on the theory of
optimal control for partial differential equatiory hions et al. [12, 13] and Marchuk et al. [14].
This method is applied to correct coefficientsyedhe inverse problems, simulate the air and
fluid pollution processes ([14 - 21]).

-In this paper we will concentrate the study onitlentification coefficient parametds, of

the drag coefficienk = k G,,(1+ ) cos a (C,, =0.82). In the second section we will describe

the abstract definition of an inverse problem \@aiation methods. The unknown coefficient is
defined as the solution of an optimization problémthe third section we will formulate the
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model of the problem of body's fast motion undetewaroblem. The 4-th section is devoted to
the application of optimal control to the identitmon of model's coefficient.

2. GENERAL VARIATION APPROACH

Because In the model's parameters are a syntlegtiesentation of several physical effects,
they can't be directly estimated. They depend batlthe model and on the data. They will be
evaluated as the solution of an "Inverse ProbldraSically as the solution of an optimization
problem. The advantage is that there exist mangiefit algorithms for solving these problems.
Most of them require to compute the gradient offtmetion to be minimized. The cost function
is done by solving an "Adjoin Model". The methoddisscribed in many papers together with
the computational developments ([14 - 21]). It barsummarized as follows:

Let X(t) the state vector describing the evolution of aeywsgoverned by the abstract
equation:

(0):4
_:F(X,El,...,En) (21)

dt
X (0) =X,

where: B,...,En are the equation’'s parameters withis the number of parameterX;(t) is a
unknown state vector belonging for ahyto a Hilbert space], XoUL; F is a nonlinear

operator mapping x Yp to Y with Y = Lp(0,T,0), ||||Y :()%{/2 Ypis Hilbert space (the

space of model's parameters); Suppose that forngiwngial value X(0)= XgUDOand
(El,...,En)Dthhere exists a unique solutioX OO to (2.1). In case the values of

E=(EL....Bn) are unknown and there are some observation ¥atgsl LI gpwith Ugpsis a
Hilbert space (observation space) we introducduhetional called cost function:

1T L ) (2.2)
J(E :E(J;(H(CX— Xobs), CX- XObs)Dobs d&E( E B)

where (EQ1,--.EQn) are priori approximation evaluations d,...,.En; C:U - Ugpgis a
linear bounded operatorH : Ugps — Ugps IS symmetric positive definite operator; The

problem is to determineE* =(Ej_ Ifnj by minimizing J . The second and the third terms in

J are a regularization term in the sense of Tykhohave a well posed problem (see [15, 17]).
The optimal solutions are characterizedjby(El* E?, ), where [0.J is the gradient of . To
compute this gradient we introduge (i=1,2,...n), the directions in the spaxg. We will
compute the Gateaux derivative of the cost functibrby E=(E1,...,En) in the directions
ofe=(q,...,¢). The Gateaux derivative of the cost functich in the directions of
e=(q,...,¢) will be:
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(e £)=Ef(C Mok %), %) @3 & .3
:;1( H(CX = X), 5 ')) dt+iZ:1‘,< E- B 9 (2.3)
=(Jg (B B) oode (B nE)) (@)’

where: X @ | ja (E1 En) respectively are the Gateaux derivativesxofand J with respect
to E in the directionsg . Here <,> is the dot product associated with themoperator | |.
The optimal solution of problem is characterized B E,....E,)=01.J( ¢,...)' = ( where
0.J =(JE1JE) is the gradient of) with respect toE ,..,E,; The superscripl indicates
the transpose of the vector.

The Gateaux derivative equations of (2.1)Hyin the directions of § (i =1,2,..n) are:

dX 6F X @ . OF
o ( ai En)D()+aEi[q (2.4)

X" (0)=0

Let us introduc®" , the adjoin variable in the same spaceXas Multiplying equation
(2.4) by P in spacel] we integrate by time betwedh andT . It comes:

j(d% p(wldt:}(gw, F‘”ju dt+i(j—£ e ;ﬁ»jﬂ d 25)
or(%0(1),P (1) - %(9. B(q) j{x & [ﬂ mpl o {dg B 26

i=12,..n

The superscript indicates the transpose of the matrix.
Summingn equations of (2.6) we have

[(%0(m). P (1) (% (@), #(9), |

_Z[I[ ,dP +[3)'j [P“)JD dt+ ¢Hj—gt_w d% (2.7)

If PY is the solution of:
dpP® dF
P" =C"H(CX~

PO (T)=0 (2.8)

then (2.7) becomes:
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i=1

] e e
=Y af B—E Pt 29)

i=1

Therefore, from (2.3), (2.9), we have

j(El,___,En):i -j{g_ﬂ P dt+ E- l:noJie

(2.10)

with 0=(3 (B, E) o (B .. E)) (2.11)

where:Jg(El,...,ﬁ):—T[[:—;} P dt+ E- E,

Equations 2.1 - 2.9 and the condition for the gmaid(2.11) to be null are the Optimality
System (O.S). The adjoin model will be run back avay get the gradient which are used to
carry out an algorithm of optimization [14 - 21].

3. MATHEMATICAL MODEL FOR THE BODY MOTION

To describe the motion of body, a body fixed cooate system as shown in Figure 2 is
chosen.(X,,Y,, Z)) is the inertial reference frame with origin at GdafX,,Y;, Z) is the non-

inertial reference frame with origin at A, the @pthe slender body. Th¥; -axis coincides with
the longitudinal axis of the slender body. The comgnts of velocity of point A along; and
Z, direction ared and W respectivelyThe components of velocity of point A aloXgandZ,
direction ardJr andWe respectively. The angular velocity and rotatingidagaboutY, axis are

Qand( respectively.

YO

n \
center of mass

Figure 2Axes of body and inertial frames.

20

The relationships between body and inertial fixedowities are described by the following
formulas:
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Ug =Ucosd+W sird ; We =-U siid+ W cof ;9= Q3 (035

The mathematic cavity model [1] is used to descth®E motion of slender body under
water in cavity. The motion of slender body in bpttases is written by the following equations:

Phase 1: FouU® >>W? and pAk(U,W, § U >>2mLQ@ the equation can be written as:

ou_ 1
—= 2mpk(u,w, h AU

ot

ow
—=0U
ot Q

Q.
ot

@ =-Usind +W cos?

ot

09 _
E_Q

U(0)=U,W(0)=W; (0= Q:q9= Q: 1O (0=l
Phase 2: Fou® >>W? and pAk(U,W, § U >>2mLQ@ the equation can be written as:

(3.1)

a_Uz_Zrinm(u,W,r) HA©LLOY
O WP [ ML+ Ml L %,) 2K QM L1 L %3]+ QL

g

(3.2)
=—KM, [W?}, x,, +2WQLL X, ],

=-Usind+W cos?

where:
- @ is the angle of slender body during impact with tavity boundary,

tand = V—V ord= arctanv—v
U @]

i F(A,r,lk,e):Aﬁrzcos‘{ﬂj—(r -1, tad) i, tad

- k(U,W, )=k G,(1+0)coda
-C,, =0.82
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- a is the angle between flow direction and body'saion in moving
R
U 2 +W2

- p, =pgh+ B, - Ambient pressure

coa =

- |, is the wetted length of the body

- k, , K are parameters; For the circular sectior 277 ([1])

h is the water depth between the body's positiorveatdr free surface

p© is the mass density of water

- X, Is the distance between body's tail and its cesiftreass;

m is the mass of the slender body

poo B pc

o is the cavitation numbep =———————
o.5(u2 +W2)

- | is the moment of inertia of the body about an @emllel to theY, axis and passing
through its centre of mass

- r=d /2 is the radius of slender body
2

is the area of the cavitator

nd
-A =
dc , , ,
- T, :7 is the cavitator radius
- g =9.81 m/s is the gravity acceleration
- p. is the vapour pressure of water

To get the above equations the following condit'eoneeded:l—t <<1

The geometry of the cavity is given by ([1, 2, 8]):
x—1/2)? 2
(x=v2) |y _
(1/2) (Dy/2)

where the maximum diametdd, and lengthl of the cavity shape are given by the following

formulas:
D, =d JleD /Iog—

The equation (3.1) - (3.2) can be rewritten asofmsﬂ.

oX
A (3.3)
X(0)= Xg
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where: X =(U,W, Q hd)' (3.4)
is an unknown state function vector of the equati@l)-(3.2) and

Xo =(U0’VV0’ Q. h)’ﬁo)T

ACX) =[ A(X), (X, A( X~ Usind + Weos? , ¢ (3.5)

—ipk(U,W, h ,%UZ in the first phase

A(X) = 1
—%pk(U,W, h F( & k.9 U2 in the second phas
QU in the first phase

A (X) = 2 )
KGQW* + KCoW+ QU in thesec ond pha:
QU in the first phase

A(X)= 2 .
CawW=+ 4WQ in thesec ond pha:

G =Myl + M Xor( L= Xen); Co = 2MyLx o] L= X o} == Myl X 5:.C,=— M,Ll x|

The equation 3.3 is solved by Runge Kutta method.

4. CORECTION OF ki COEFFICIENT

We have priori  approximations K of k and measurement
Xobs = (U obsW obsQ obd! o o} Of the motion velocity of body. Using the cost ftion

(see formula 4.1) the continuous problem is to rieitee kI minimizingJ :
1T 1 2
== - - = k- 4.1
)= (j) (CX= Yobs CX= Xobdpy  dt-—( &~ o) “.
Cis an operator, that is Diract's matrix, from thgase of the variableX to the space of
observation with point wise measurement. Therefarmehave an optimal control problem with
respect to the coefficiekf. The first step is to exhibit the Euler-Lagranggi@ion- necessary
equation for an optimum in order to exhibit thedieat of J with respect té . Then, we will
be able to carry out some optimization algorithm.
The data assimilation problem is written in thexfor
oX
—=A(X
5 (X)
X(0)=X,
3(K)=inf 3(k)

kg

(4.2)
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here X =(U,W, Q h,z9)T, A(X) is the vector function defined by the formula §3.(.5), and
the cost functionJ(ki) is defined by the formula (4.1). To solve the peob (4.2) we will
define the formula of functior.ﬂ;l(kl) in the next subsection.

4.1. Computation of Gateaux derivative for the costunction J

Let ky being a value in the space of the control. Letnidduce the Gateau derivative

~

X =(U,W, Q hé)T of X =(U,W, Q h#)" by ky in the directions ok, as follows ([22]):

s . X(kg+aky) - X(
a-0
Then the Gateaux derivative of the cost functibrwith respect tok) in the directions of

k, will be:
309 =[(C (0% %), ¥, (k- k) 4.3)

Firstly, we will compute Gateaux derivativég(lg) of the cost function] with respect to
k. in the directions ok, .

The Gateau derivative equations of (3.3) with respek in the direction oﬂ?lare written
as follows:

oX - -
o =N(X) X+ B(X) K
X(0)=0 (4.4)
where:
Np2(X) N X) 0 Ni4 X) 0 (4.5)
N21(X) NoxX) Nog X 0 0
N(X)=| 0 Ng2(X) NzxX) 0 0
-sind cos? 0 0 U co8-W sifi
0 0 1 0 0

Nigl) in the first phase
i = (i=1..3j=1.4
F @
Nij in the second phase
p-p |(WrIW) g =P 4
O.5p(U2+W2)] (U2+W2)3/2 '%"'m KpCDOO.Sp(U2+W2)

1
Ny = _%pkch o[1+

1 P, P Uw 1 n- R
NG = — G, 1+ e += —= 2 w4
= om Pk "[ O.5p(U2+W2)](U2+W2)3/2 & mlipc”"o_5p(uz+v\/2)5’2 d
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NO =P 9
14 2m k1C:D005(U2 +W2)3/2 A

1)
NO=Q; N® =0;nw=u;ND =0; Ny =0

p-p (B WI)R o P.-R s
.5,0(U2+W2)] (U2+W2)3/2 + mk1pCDo 0.5,0(U2+W2) U'F

1
NG =L mg{u -

. (r-=l tan@\l I.d
P P. ~ R o kr Tk ' tk 6.3 uw
kG| T —— e | 1P B0 2l tang | ——
klcbo[ O.5p(U2+W2)] Cosz[r—lktanﬁj 2 K (Uz +W2)
r

1 p. - P UWE 1 R-R 5
NP =— 1+ £ ¢+ —kpChpo————WUE
2 om klpCDO[ O.5,O(UZ+W2)J(U2+W2)3’2 mklp Do 0.5/)(U2+W2)5/2 ¢

[r -, tanﬂj l,d
2
tand , 3| [ditan@

U
Ea e I cos [ 2N

N® =—FP. 9 U
« " om® NECENAN

c

N@ = Q;N@ =2KCW+ KG,Q; N2 = KC,W+ U N@ =2KkC W+ KC,Q
N$& = KC W

B=(B, By, B3,0,0)
1 u* ,
—%pCDO(H a)m A for the first phase
5= 1 u* 1
—ﬂpCDO(H J)m F - >m k(UW,h P E, [, forthe second pha

: [r—lktané?j tand dtand

sinfl ———|—— T | 3
o, =|r? r—l Hr - L +Ztand,/dl, tard

co§[r krtan j 2 2

_ |0 for the first phase
> | W + G, WQfor the second pha

_ |0 for the first phase
| WP + G, WQfor the second pha:

Cix»Cox Csx s Gy, are the derivatives of those functions with respec parameterky .

Multiplying the equation (4.4) by adjoin variabl%=(Pl, B,B,E, E)T in the same space a§
and then integrating bl between 0 and we have:
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(%(0)P(T), (0. ), = [ %S+ F(x ) @ B8P wg

0

where: F (X,P)= N".P with N(X) is defined by the formula (4.5).

If P is satisfying the following equation:

§+F (X,P)=-C"H(CX~ X,)

P(T)=0 (4.7)
Then the Gateau derivativeiﬁ(ki) of the cost function with respect tok] in the

directions ofE1 is: (see formula 4.3):

T

5k1(k1)=‘i(5<-%+ F(X, P)jm dt+( k- ggo)‘g:‘g{—j B P de( L)j=_lk;q;

0

Therefore, the functiod,, (k) is calculated by the following formula:

3, =-[(BR+BR+ BR) dt( k- k) “s)

4.2. Algorithm to solve the optimal control problem

The optimal method is based on inverse BFGS ugd@8te 26]. The algorithm schema is
written as follows:

a. Let 1 = 0: Get the initial valu& ; =k, ,; Hj =1; Solve equations 3.3 with the parameter
k;;; and the adjoin equations 4.7; Get the funcﬂgmlg,i) by the formula 4.8

b. Calculate
dj =—Hi »'!I(l(k_l_,i )
c. Calculate a; so that is satisfied the Armijo-Wolfe conditioff25, 26]):
I +aid)s k) +q AR (k) id
where 0(0,1) . Typically B ranges froml0 4 t0 0.1
This aj can be found by the following schema steps ([27]):
¢.1dinitial =1.
c.2 GivenrJ(0,1). Typically 7 =0.5.
¢.3 Let I=0 theng! =dinitial -

c.4 Check:
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4.3.

While not J (kg +al d)< ki )+a|,3{i1( |S|j,) d
Seta'™ =10’

Increasel by 1
End while

.5 Setaj =a(|).
d. CalculateAkyj =§ =-a H il(k_]j, )

e. Calculatek,,,, =k, +Ak,

f. Solve equations 3.3 with the parameigr, and the adjoin equations 4.7.
g. Get the function), (k,,,) by the formula 4.8.

h. Calculatey; = J|I<1(kl’i+]) - 4'(1( kij)
'S
I. CalculateHj+1 = 1—31—yl Hj 1_$_¥ + Pi
Yi S y ¥ Vs,

j-Leti=i+1
k.Gotostepb ifJ,Ll(Igvi)zg ( € >0is given).

If J;(l(kLi) = Othe optimal process is stopped. Then, we hgve ki .

Simulation experiment on correcting on corredéhg parameter k1 so that U is closed to
measurement

Let the body withm= 0.025091315 kg}, = 2.5 cm,L,= 11.5 cmd = 0.57 cm,d_ = 0.12

cm, U,=240 m/s,W,=0, Q=1rad./s;h,=7m [,=0,1,=1.81.10-4 kgrﬁ X.m=10.01 cm.
We will test the problem by considering the follogiexperiments:

- By the same way as [16, 28] we can have the whSen data

Xobs=(U obs W obsQ obd ok o as follows:

X =

Let model run in 0.5s with valudsj=1 simulating the true velocity
(U, W, Q h#) by solving the equations (3.1)-(3.2).

This velocity X is used as a referen¥gps.

The measuremerXobs is obtained by the values & in all the time period.

Then we haveXgpg in every time step.

- In the testing the model is running in the tinegipd 0.5s with value =2. k,. Then, the

vector functionX = (U, W, Q hz9) is obtained by solving equations (3.1)-(3.2).
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The equations (3.1)-(3.2) are solved by Runge Kmugthod.
- Using the formula of functiod, (4.8) the optimal control problem (4.2) is solmdthe
algorithm schema in subsection 4.2. Then the mimnoti J (kl) is found by the formula (4.1)

with k{ value.

- The process finding the coefficient is shown igufe 3. By this process the error of
obtain coefficient in the end optimal process sslthan 0.00001 percentage. In the Figure 4 the
obtain cost functionl in the end of optimal process is nearly zero (teas 0.00001). The error

percentages of velocitidd by X1 direction with referenc&obs with and without correction
coefficient k; are shown in Figure 5. With the correction coéffit the percentage errors of
velocities are less than 0.00016 %.

- We have done real experimental of projectile mgmunderwater. The cavity is presented
in the Picture 1. In the real measurement we h&@san@asured points of velocitidd by

Xpdirection with the initial velocityU,= 271.2 m/s. The other initial conditions are clmse
approximatelyW, =0, Q,= 1 rad. /sh,=1 m,[],=0.

- Let the model run with the beginning coefficidgt 2.5 then the optimal coefficierki =
0.909999046325684 is found by the optimal program.
- The comparison between velocity measurement hadother ones of calculation with

k,= 2.5 or optimal coefficienk{ = 0.909999046325684 is presented in the figure 6.

- By this figure it is easy to see that with optiroeefficient kI = 0.909999046325684 the
model is closer to measurement than the other athewt correction.

19 100
90
1.7 ici
coefficient
K1 . 80 error
- ) percen|
<, %?0 (%)
2 ]
o (2]
] £ 50
E a
;S
33 g 50
1=
w
40
1.1
* 20
0.9 20
10
0.7 - - ;
0 50 100 150 0 ' ' '
0 50 100 150
Optimal process Optimal process

Figure 3.Correcting coefficienk; in optimal process (Left); Coefficient error pemté optimal process
correctingk, (Right).
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16
14
] 12 =—=cost function J
_E 10
= 8
< &
g \’hl
o 4
2
[} T A T T
0 50 100 150
Optimal process
Figure 4.Cost functionJ in optimal process correctirkg.
0.0004 80
0.00035 70
0.0003 =60 —gg?:rent of
£ % velocity U
g % k1=2
S 0.0002 - g 40
i w
0.00015 - 30 .'
_-II
0.0001 20
—— emor percent of 10 -
0.00005 velocity U with
optimal k1=k1* rd
[} T T
0 . T : 0 500 1000
0 500 1000
Ti t
Time step Ime step

Figure 5.Percent error of velocity) (t) with optimal correction of coefficierk] = k;_ (left); Percent
error of velocityU (t) with coefficient k =2 (Right).
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Picture 1.The full cavity arising in very fast motion of peajtile under water.

272
2
271
—with k1=2.5
- ""-"--:-:._,__!
—with opirmal 'g
k1=0.909999 s 270
) g \
_ b
= = 260 Ny
5 =)
c w
8 =
s S 268
3 [=]
g 1 2
5 =
I}
267
— with k1=2.5
. - 266
- —yith optimal
k1=0909999
265 -
----8---- measurement
. . 264 !
1 - 1 51
Time step Time stee

Figure 6.Percent error of velocitied by X1direction with and without optimal correction ofefticient

kl comparing with measurement (left); ComparisonabuitiesU by X1direction with or without

correction and measurement.
4. CONCLUSIONS

In the model of slender body running very fast undater the coefficienk strongly
effects to the simulation results (the right of dfigy 5). By the results presented in Figures 3,4 it

is easy to see that by the data assimilation metheccorrected coefficierkl* can be nearly
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equal to the reference coefficiekt . It follows that the velocityJ (t) is closed to the one in

reference model (the left of the Figure 5 or FigbyeThen the data assimilation method can be
used as the good tool to correct coefficient inrtteelel of body running fast under water.
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Trong moi trdng née, khi mpt vat thé ¢6 hinh dng minh di chugn wi van toc nhanh
huong e phia trde € te quay trong rt khe 6ng (con @i la khoang bi hay tdi foi xam thrc).

Trong md hinh kheding he s can cia At thé dong vai tro ét quan tong trong qua trinh di
chuyen. Theo Salis, Garabedian, Kiceniukéd can néygiuqc chon bai céc’gié tr thich hop
trong khding tir 0,8 dén 1. Theo Rand, Kirschner thE Iso can naydugc viét béi cdng thrc
k=Cpo(1+0)cosa vsi o 1a $ cavitation (§ xam thec ), @ 1a goc gita truc cia vat thé
manh va hréng aia di chugn. C,, la tham 8 thuong dugc cton trong khang tir 0.6 dén
0,85. Trong bai bao nayéisd can duogc viét dudi dang k = k Gy, (1+ o) cos a, trong tinh toan
hé o Cg,duoc liy bing 0,82 va Bng phrong phap toandt hé s6 chra biét k;, s5 dwoc hi¢u
chinh sao cho céacim téc di chuyn trong md hinh 4n Wi cac $ liéu quan safuoc. Phrong
phap toan bc dugc ap ding dé tim ke sd chua biét k, la phrong phapdong héa 8 ligu. Trong
phuong phap nay caddiéu quan satiugc sr dung trong ham mic tiéu.bay chinh la rgt trong
nhirng phrong phap Btu hiéu dé giai cac bai toandi wu bang céach dii bai toan lién bp roi
tinh gradient ¢a ham nac tiéu.

Tir khoa: ¢ong hoa 6 liéu, i uu, phrong phap Runge-Kutta.
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