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ABSTRACT

The paper proposes a theorem to assert the ailpigand robustness of the fully actuated
mechanical system controlled by the adaptive fedddaearization controller. The fully
actuated system to be controlled is consideratetubed by input disturbances and contains
constant uncertain parameters in its Euler-Lagrdogeed model. It is shown in this paper that
independent of input disturbances of the adapteedlback linearization controller with
appropriately chosen parameters will drive the outpf controlled systems to the desired
trajectory for any arbitrary precision. The adagtoontroller is applied to the two-link planar
elbow arm robot with unknown mass of the end-effieof second link and input torque noises
caused by the viscous friction forces and Coulomdtidn terms. Simulation results show that
the arbitrary precision of the tracking errors ale& guaranteed.

Keywords feedback linearization, robust adaptive feedbamhtrol, uncertain systems, Euler-
Lagrange forced model.

1. INTRODUCTION

The uncertainness of fully actuated mechanicalesyst which is commonly described by
an Euler-Lagrange forced model as follows [1]:

M(q,0)i+C(g,4,8)q+g(q.0)=u 1)
is understood that the - dimensional vector and of model parameters are constant but
unknown, which is hov;ever linear dependent on jlstesn in the sense of:
M(q,0)§+C(q.4.8)i+9(@.0)=Fo(@.q.6)*Fla.q4¥ 2
In the Euler-Lagrange model given above thelimensional vectoy is called the vector

nxn

of configuration variablesy is the n dimensional vector of. control inputs,M(g,0) R
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is the inertia matrix, which is symmetric and piesitdefinite, andC(q,q,8)0R™" is the
centripetal and coriolis forces corresponding rzatri o

To tracking control for this uncertain system ie $ense, that the tracking error ¢ -q,
has to be bounded for a0 and asymptotically convergence to the origin, w@(t) is any
desired trajectory, the adaptive controller presein [1, 2]:

8=(BF)" Pz with z=col(e,¢)
u=M(q.0)[ d, +Ke+Koé |+C(q,.8)i+9(.0)

3)

is widely admitted to be an effective solution [3]-where the2n xn matrix B is defined by:

)
B=| .,
M ~(q,0)

in which © is then xn zeros matrix,K;, K, are any two selectedxn matrices such that the

2n X 2n matrix:
©] I
A=
-K, -K,

with the n xn identity matrix I, will be Hurwitz, and the symmetric positive défien2n x 2n
matrix P is the solution of the Lyapunov equation:
%(ATP +PA) =—Q

where ) is also an arbitrarily chosen symmetric positivadirdte 2nx 2n matrix. In many

references the adaptive controller (3) is refertedas theadaptive feedback linearization
controller.

Furthermore, as it is shown in [2 - 4], for the wohproblem of input perturbed uncertain
systems:

M(q,0)§+C(g,4.8)§+g(g.0)=u+n (4)
wheren(t) is the vector of input noises, which is assumeletdounded:
J=sun ¢ )
t

the ¢ -feedback adaptive feedback linearization control® given above always drives the
tracking errorz =col(e,é) of the closed loop system depicted in Fig. 1 adptigally to the
neighborhood? of the origin defined by:

o
0] o

/1min (Q)

where A, () denotes the minimal eigenvalue dﬁ.‘ﬂithe norm of a matrix. The neighborhood

O is also referred as the attractor of closed lompesns. The smaller this attractor is, the better
tracking performance of the system is.

0= {QD]KZH
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Figurre 1. Structure of the closed loop system obtained bygigie adaptive feedback linearization
controller (3).

S

v

Since the feedback linearization controller (3) teors in it some freely selected
parameters such as two matricks, K, and the symmetric positive definite matrix, the

robust tracking performance defined in the equatidp above of the closed loop system
depicted in O could be evidently improved furthidrthese parameters have been suitably
chosen.

And this paper will present a methodology to deteenmatricesk;, K,, P for adaptive

feedback linearization controller (3) so that threcking behaviour of the obtained closed loop
system satisfies any desired arbitrarily smalkator O .

2. MAIN RESULT

Also according to the suggestion of [1], both neasiX;, K, of the feedback linearization
controller (3) could be chosen diagonally:

Ky =diag(ky;), Ko=diag(ky), i=12,... n
and appropriately the matri@ of the form:

2 . 2
0 =[Kl 2@ }:(dmg(kﬂ) | (2 J ©)
C] KZ _Kl S} dmg(kzl _k]Z)

In this circumstance the matriz is Hurwitz if and only if:
ky; >0, k3 >ky forall i=1,2, ... n
and the Lyapunov equation has the following unispietion:

2K, K, K
p=| 2K Ky @
K, K,

which is obviously symmetric and positive definite.

Moreover, it is easily to recognize from the equatf5), that the measure 6 defined as
follows:

m((’)) :rggx&—y‘ forall z,y 0O

is an intuitive value to appreciate the robustradsie closed loop system. The smalie(O)
is, the better robustness of the system is.
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Theorem: For any givens >0 always exits two matrice&;, K, such that the proposed -
feedback dynamic controller (3) satisfies the dmbiobustness:

m((’)) <€ (8)
Proof.
Chosenk;, K, diagonally with:
K, =diag(k), k>1and K, = diag(ak), a>+/2 (9)
as well as) from the structure (6), then there are obtained:

2K\K, Ki) © P T
|P5]= ( - 1} v 11\{_1 < ymax(ky ko)
Ky Ky )\ M KoM i
and 0= K{ © _ diag(kf) )
© K5-K, S) diag(k3 —ky)
= Amin (@) = miin(kﬁ k3 —k]i)

where M is the short expression of the matfik(q,6) Z(mij (g,é)) and:

== max S, 0]

I<ism ;5
Hence, it deduces:
lpsje _ ot o) o
Arin (@) miin(kz %2 k) n}in(kz % 2-k)
yoak : yoak _ Yoa

B mjn(k2 ,azkz—kz) min(k2 62— 1) 2) k
1 1
and from which to find out:

koo k

Therefore, by any givew >0 always exists a sufficiently large number O such that:
m(0) < % <e
which affirms the rightness of Theorem. .

3. NUMERICAL EXAMPLE

To illustrate the proposed theorem it is considdreckafter a two-link planar elbow arm

robot (Fig. 2), which is now additionally perturbbyg input noises: = (n,l,nz)T and described
by the uncertain Euler-Lagrange forced model (4hwhe following parameters [1]:
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oo{) uef2) ()

(m+6)ff + 615 + 2611 ,c08, 6 (5+1],c0P ,
M(q,0)= ) )
(5 +1l,cosp,) ais (10)
_[—26hl,9,sing, -0l ,sing ,
C(Q’q’g)‘( Bl ysing, 0 ]
_( (m+8)gl, cosp, +bgl, cos@, + ¢, )
9(¢.0)=
Ggl, cos@,+ @)

where 1 = (rl,rz)T is the input vector, in which the torqug produces the angular motiafy
and the torque, produces the angular motighy of robot arms.

- 1 isthe torque which produces the angle
- uyp isthe torque which produces the ange
- @ isthe mass which is not exactly measurable.

- g= 9.81m/52 is the acceleration of gravity

Figure 2.The controlled system is a two-link planar elbowaobot.

Now, the adaptive controller (3) is applied to #ren robot in Fig. 2 for tracking problem
of the angles and the velovities of two links, Isyng two diagonal matrice&;, K, suggested

in (9 witha=2:
kO % 0 2k 0
K]_: ,K2: j— K]_Kzz
0 k& 0 0 22

4% 0 kK O

P:(ZKle Kl]: 0 4° 0 &
K, K k0 2 O

0 k& 0 %

the feedback linearization controller (3) for tlmntrolled system (10) with parameters:
9=9.8n /s> m=%g A= 259 = 0B l,= 04

and

becomes
1

=L
(c+6b)l5

(o L0 B2fy afy . afy+(c B+D) fZ)P[ij (11)

wheree=q~q , ¢=(¢1.¢2)" . ¢ = @] #5) denotes the tracking deviation and
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u {C o QZJ[Q +he+2ke | +(_2d¢1 ~dfa+ (m+ Q) “@q (12)
O O3 ep +0f
with
0 =13 +1,C08p 5, d =lloP,SiNg,, [ =gl,cOSP; +¢))
b=I?+a e=lLl@ising, h=ghcosp,
c =mL12
and

h=bp+aP,~2dp,~dpo+h+f
fr=api+150,+epi+
Figure 3 and Fig. 4 depict angle and velocity satiah results obtained with=3, £ =10

and k£ =30 respectively. In this simulation, the input noisgplying in two links are considered
to be depend on velocities of the links as below:

ny(£) = 3|y| Pasign (p1) + 0.5 ign @ o)+ Fand (L.1)
no(1) =5|p5| @ psign ($5) + 0.3 sign @ 1)+ Fand (1,1

The Fig. 4 shows that the response angles of that l@rm track to the set points after the
transient period in 7.5 seconds. There is 0.113ofachaximum angle errors which reduce to
2.55¢10° rad by usingk =10 and 5.%310* rad by £ =30 as showing in the Fig. 5. The moke
increases, the more angle errors and velocity £reafuce.

(13)
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Figure 3.Desired angles, simulated angles (a) and desidedities, simulated velocities (b) of first link
and second link withk =3, £ =10 and k£ = 30.
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Figure 6. The torques apply to the first link and sectimid with %
In the Fig. 6 there are input torques computedheyadaptive controller to get the tracking

of the links, the maximum amplitudes of input taggus 60 N.m withk

k=30.
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Figure 7. The adaptive paramet@rwith k =3, k=10 and k = 30.
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Figure 8. The responses of angle and velocity with changirthe mass of the end-effector.
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Figure 9. The adaptive parametér with changing of the mass of the end-effector.

The adaption of the parametérwith k=3, k=10 and £ =30 are depicted in the Fig. 7.

It changes strongly when the arm robot is effedigdnput noises and it reached to the real
value of the mass of the end-effector when thetimpises are zero. The Fig. 8 shows that the
angle and velocity responses by changing of thesnadsthe end-effector withm, =1kg,

my =2.5¢ and m, =5kg are not quite different. It means that the infleerof m, to the

angles and velaocities has been attenuated by #ygtatibn of 8 as showing in Fig. 9. Finally,
all obtained simulation results above have condutiat any desired robustness for the control
of systems with unknown parameters and input nofdgswill be always satisfied with the
feedback linearization controller (3).
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3. CONCLUSIONS

This paper refers to robustness of the fully aetiamechanical system which is considered
by Euler — Lagrange forced model with input disamrbes and contains constant uncertain
parameters. By giving and proofing a theorem weckate that the outputs of the system
controlled by the adaptive feedback linearizationtoller will track to the desired trajectories
for any arbitrary precision with appropriately choscontroller parameters. The adaptive
controller is proposed in this paper not only ketiyastracking of the outputs in the presente
the uncertain parameters but also attenuates tloernce of the input noises to the system. For
more details, the adaptive controller is appliedht® tracking problem of the two-link planar
elbow arm robot with unknown mass of the end-effeeind the influences of the noises to the
input torques, the simulation results show thatcae get the arbitrary precision of the angles
and velocities of the links. The proof of the comence of adaptive parameters to real values of
unknown parameters and applying this control metbdtie practice are our further researches.
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TOM T AT
NGHIEN CUU TiNH BEN VONG CUA BO BIEU KHIEN TUYEN TiNH HOA PHAN HOI
THICH NGHI CHO CAC H: CO KHI BAY BU CO CAU CHAP HANH CO NHEU BAT
DINH ANH HUONG BEN BAU VAO
Nguyén Van Chf, Nguyén Hién Trungd, Nguyén Do&n Pléc?

*Pai hoc Ky thugt cdng nghép Thai NguyénPuong 3/2 — Tich kong, TP Thai Nguyén
’Pgi hoc Bach khoa Ha Bl, S6 1 Pai Co Viét, Ha Npi
"Email: ngchi@tnut.edu.vn
Bai b4o naydua ra ndt dinh |i va kting dinh tinh n vitng tdy ¥ cho B co khi ddy du co

cau chip hanh c6 cac thamb sbat dinh va nhéu dau vao mo 4 dusi dang mé hinh Euler-
Lagrangeaiugc dieu khien bang by diéu khién tuyén tinh hoa pin hoi thich nghi. B diéu khién
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tuyén tinh héa phn hoi thich nghi Wi cac tham & dugc chon mot cach phu bip <5 diéu khien
dau ra @ia k¢ bam theo qjadao mong mén véi do chinh xac yéuiu ma khong ph thue vao
nhidu dau vao. B diéu khién dugc 4p ding cho 8 robot khyu tay hai thanh éi véi khéi lwong
diém cui khong bét truéc va c6 md mertau vao chu anh hrong aia cac irc ma sat nét va

cac thanh pin ma sat Coulomb. & qua mé phong cho thy ring do chinh xac tly y ¢a sai
[éch bam g dao lubn lubnduoc dam bao.

Tir khoa tuyén tinh héa phn hoi, diéu khién phan hoi thich nghi I8 viing, cac k bt dinh, K¢
phi tuyén Euler-Lagrange.
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