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ABSTRACT

The report aims to show that hedge algebras modeially the proper qualitative
semantics of words of linguistic variables basedtlan argument that the inherent qualitative
semantics of words should be expressed througlordher relationships between the words in
their respective variable domains induced by thedwsemantics, as it is required by decision
making of human daily lives. This makes the hedigelaa based approach to the word
semantics quite different to the existing approached become the only approach that can
immediately deal with the natural qualitative setitanof words. We explain clearly and
systematically distinguished features and propexiethis approach to show that these seem to
make the approach to be sound and to ensure gsti@#ness in initial applications under
consideration. This approach seems to be promiginglevelopment of hedge algebra-based
method to solve problems in various applicationd8e For illustration, we will give a short
overview of effective results of the initial ap@tons of hedge algebras in the fields of
knowledge based systems and of fuzzy control.

Keywords: order based semantics; fuzziness of word; fuzazybased semantics, fuzzy rule
based system; classification; fuzzy control.

1. INTRODUCTION

Uncertainty information, including fuzzy linguistioformation, appears in almost areas of
human society and of technology and, therefore, thegries of uncertainty can find a wide
range of applications in many distinct fields. Thezy set theory is one of such theories, whose
development is motivated by the semantics of wamls human capabilities in handling such
information, as stated by Zadeh [1]: “Humans hawamynremarkable capabilities. Among them
there are two that stand out in importance. Ringt,capability to converse, communicate, reason
and make rational decisions in an environment gfr@uision, uncertainty, incompleteness of
information and partiality of truth. And secondgthkapability to perform a wide variety of
physical and mental tasks without any measuremamisany computations.” The fuzzy set
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theory provides a mathematical formalism to dedhwhe word semantics simulate such human
capabilities in problem solving.

However, to exhibit the specific role of hedge &lges and their prospective applications,
we should start our study with making the semartfasords explicitly and formally defined. In
the fuzzy set theory, words are represented ay &&ts, which are a generalization of crisp sets.
Note that the inherent semantics of words hasrsitlbeen formally defined in the framework of
fuzzy sets, meanwhile one usually interprets thesictered fuzzy sets as representing the
semantics of the respective words assigned to thiahout any explicit basis to justify why
these words but not the other ones can more rdalgvbe assigned to them. In contrast, the
theory of hedge algebras is developed by startiitly &formalized definition what is the own
semantics of words and their fuzziness, an ess$eafteracteristic of any fuzzy data. In this
overview, we argue more explicitly that “Normallhe meaning of a word or a phrase is a
collection of objects or phenomena present in &z world that the terms or phrases point at”
and, naturally, “The presence of these terms (vagues) in natural language aingscompare
propertiesof distinct itemsn terms of words. This semantics seems to be argial for human
decision making as it will be discussed next. ..]’ [bhat is, we will argue that the semantics of
(vague) words must point at order relationshipsvbenh the words of a linguistic variable
(attribute). This seems to be very natural and resdeand it makes the algebraic approach
essentially different from the fuzzy set based apph, which sometime we call “tlanalytic
approach”, in modeling the word semantics and mugiting human capabilities mentioned
above. We will demonstrate in an obvious mannet the theory of hedge algebras forms a
sound mathematical and logical foundation to maaieuimmediately words in problem
solving. It is natural to expect that the soundesi® of an approach, the more advantageous and
effective it may offer. At the same time, we wiXhgbit initial applications of distinct fields, e.g
classification, decision making and fuzzy contreihg fuzzy rule bases systems (FRBSs), which
contribute to show the soundness and the effeassenf the algebraic approach.

The rest paper is organized as follows. In Seiave present why hedge algebras form a
sound approach to the semantics of words. Sectiev8ted to explain why this approach can
bring out the effectiveness in the applicationsarncbnsideration and to expose shortly their
results. Section 4 offers for main conclusions.

2. HEDGE ALGEBRAS - A SOUND MATHEMATICAL STRUCTURE FOR
MODELING AND HANDLING THE PROPER WORD SEMANTICS

2.1. What is the semantics of vague words?

To show hedge algebras (HAs) to be a sound matieahatructure to deal with to the
semantics of words, we start with discussion alfmeiisemantics of words since it is crucial and
elementary concept motivating the introductionudzy sets and, then, HAs.

Semantics of formal expressions (syntax) is an iaob abstract concept of formal logics.
Words in a natural language viewed as as symbuiigys conveying their meaning, which point
at definite things, facts or phenomena in reabig used to communicate between people in a
community or to do reasoning. For example, the rimgaonf the symbolic string “river” in
English is a collections of items in the real wotldht the community in this reality together
point out that they are “river”. Similarly, we caxplain the meaning of “tree”, “green”, “rose
flower”, and so on. Although the semantics of suairds is sophisticated, it may still be very
easy for us to explain what the meaning of suchdw/ds, as they point abncrete itemén the
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reality. It seems to be much more difficult to defithe semantics of vague terms such as “true”,
“young”, “beautiful”, ... , since they do not stilhdicate concrete items in the real world. So,
what things in the reality they point at?

To define the semantics of this kind of words,tfitke authors of the study do not think
that they point at “fuzzy sets”, because no anyviddals of a human community think of a
collection of items in reality that the fuzzy sdtsscribe when reading or saying these words. To
argue what is the meaning of, for example, the gjimlexpression “young” in English, we try
to imagine what the word “young” points at. Assuthat “young” is a words of the attribute
AGE (a linguistic variable). Even then we can obsethat it still does not point at concrete
items of the real world, because he does not kngourig” points at people, animals or other
things. To discuss about this it is useful for agmagine in which way a language has been
taken shape along with the existence and develdpaienhuman community. We can see that
language serves for cognition of reality and, eislgc for the decision making of human
beings. We recognize that life of a human being,@ren of an animal, comprises a consecutive
series of decisions. The nature of a decision ishtmose a more preferable alternative among
several ones. That isomparability between propertiesf items is essential and crucial for
decision making. As a consequence, in natural lages, as vehicles convey semantics for
communicating and doing reasoning of human beisgsuld have elements (words, phrases,
linguistic hedges, ...) to describe preferableraitives based on comparison between their
properties with respect to certain decision cigtefihus, it implies that worda a contextof a
linguistic variable (attribute) used to describeopgarties of items in the real world are
comparable, i.e. the semantics of words of a vhgjagenerate an order relation on the word-
domain of the variable. So, we can recognize thatdes in this context point aheir order
relationships with the other ones the same context, noting that two words maynelbe
incomparable.

This viewpoint of the word semantics seems to g essential and fundamental. Once
term-domains have their own structum@ydelling the word semanticsne should start with this
structure to develop a formalisrAfter all, the existence and development of a &wineing or a
human community, or even of an animal, in a realavis just a real and objective environment
in which language accompanying with a community teen form and, as a consequence,
involves elements used to describe preferable rfestof alternatives in the reality serving for
decision making.

2.2. Hedge algebras — A sound mathematical semantatructure of term-domains of
variables

Restricting ourselves to the context of a lingaistariable, based on this viewpoint of the
word semantics, every word-domain can be viewedra®rder-based structure in which the
meaning of a word is described by a collectiont®bider relationships with the other words of
the word-domain. Thus, any mathematical theory libpesl to model the semantics of words of
a variable should be able to deal with this semante.g. should preserve the order-based
structure of the word-domain. It can easily be st the fuzzy set theory does not preserve
these order-based structures.

Hedge algebras were introduced and developed teln@otl represent this semantics of
words by considering word-domains of linguisticightes as algebras and by trying to discover
the semantic properties of words in terms of tidérent” semantic order relation of the word-
domains [3- 6, 7, 8]. Because term-domains in natural langsibgee their own inherent order-
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based structure, we may expect that many integestémantic properties of words can be
discovered and, it can be observed that, they ¢drnformulated in the framework of the fuzzy
set theory.

Formally, every word-domain of a variabhé Dom(X), can be considered as an abstract
algebra,2x = (X, G, C, H,, <), whereX is a word-set off; < is an order relation oX; G is a set
of two generators, one is called the negative pynbermc™ and the other the positive primary
term ¢* satisfyingc™ < ¢, for instancesmall < big; C = {0, W, 1} is the set of constants, in
which 0 and1 are, respectively, the least and the greatest er(q, <) andW is the neutral
term, e.g. Mediun, “ middle-agg, ..., satisfying0<c <W<c'<1; H, =H O {I}, whereH is
a set of hedges of, regarded as unary operations, amslthe identity ofiX. So, every ternx in
X can be represented as a string expression,thergi=corx=h,, ... hic, forsomec 0 GO C
andh, 0O H,j =1, ..,m and it is called (string) representationxpfwhich is quite similar to
words expressions in natural (English) languages,“eery rather true”.

In this formalized structure, many natural progrttan be formulated and discovered [3],
for instance, the following:

First, it is compatible with the comparability demdafor human decision making, the
action effect of every hedde e.g.h is “very”, “little”, or “extremely” ..., when actig on a word
X, causes order relationships between the reswitord hx and the operand word i.e. we have
eitherx < hx, orx> hx If hx = x, thenx is a fixed point and, then, finite hedge algelwas be
assumed.

It is interesting that in terms &f, we can define the following concepts, but not oinéy
ones, andhey cannot be discovered in the fuzzy set theanyework(refer to [2, 3, 5, 9]):

-Algebraic signof the primary words™ andc’, ¢ < c¢', representing their inverse semantic
tendenciessignc) = —1 andsign(c’) = +1. For examplefast and slow have inverse
tendencies ansign(slow) = —1 andsign(fasf = +1.

-Algebraic signof the hedges: firstly, as discussed above, eliedge either increases or
decreases the order based semantics of an atorimieafp) word and, hence, it has an
“algebraic” sign. So, the sét of hedges of interest is partitioned into theafgtositive
hedgesH" = {h O H: h¢" > ¢}, and the set of negative hedges,= {h 0 H: h¢" <c¢'}.
Secondly, every hedge has its semantic effects veiipect to any other ones. For
instance signlL, V) = -1, whereL andV stand forLittle and Very, respectively, a&
decreases the effect¥f e.g.true<L_V_true<V_trug whereasign(V, L) = +1.

-Hedge inheritancewhich describes the own function of the hedges they only modify
or intensify the semantics of a given word, whil@ériting a specific key semantics of
the word they act on. In terms €f it can be formulated as follows (neR,stands for
Rathe):

(i) h#zk& hx<kx= h’hx<kkx, for allh, k 0 H,. For instancel._true< R_true=
hL_true<kR_true and

(i) vO H(u) andv<u (v=u) = v<hu(v= hu), for everyh OO H,.

-Word independencyf u, v are independent, i.e.0 H,(v) andv O H,(u), thenx [ H,(u) =
x O H(v).

The above properties that originate only from tla¢ural semantics of words are basis to
establishan axiom system for word-domain structyreeluding in particulatinear ones, and,
then, we obtain algebraic structures, calldeddge Algebras(HAs). Note that, we restrict
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ourselves to the linear structures of word-domamghis study. So, hedge algebras provide a
strict mathematical formalism to handle immediatetyrds as linguistic values of variables and
it is interesting that it is sufficient to develbpdge algebras to become a rich enough theory to
deal with linguistic fuzzy information for problesolving in an uncertainty environment.

2.3. Quantification of hedge algebras and the quaitative semantics of words

Fuzzy sets assigned by human user to words camtbeplieted as being quantitative
semantics of words and one argues that they ragrdbe fuzziness of words. Then, the
fuzziness of words was defined pointwise basedhemtembership values of their fuzzy sets:
every value taken in [0,1] represents an uncestalegree of the membership of an element of
the variable universe of discuss that attains tiie Jufor the element membership degree value
equal to %, the value 0O for the element membedbégree values equal to 0 or 1 and a value in
between 0 and 1 for the remaining element memberdbgree values. Then, the fuzziness
measure of a word is measured by the sum of thertaioty degrees of the membership values
of its assigned fuzzy set. That isstead dealing with the fuzziness with woalse had to deal
with the fuzziness of their assigned fuzzy. sets

It can be seen that therens formal linkageof the word semantics with the fuzzy sets
assigned by the user to the words of interest, @dsethe fuzziness of words is defined by their
fuzzy sets, i.eit depends on the fuzzy set assignment by the bsérnot on the words
themselvesTherefore, there is an obvious gap between theabhsemantics of words and their
fuzzy set based semantics assigned to them bystite This may causes some problems, e.g. the
definition of the fuzziness of words based on themership values of their fuzzy sets might
not be represent the proper fuzziness of wordsil&ig once the fuzzy set based semantics of
words cannot be formally defined based on their ova@rent qualitative semantics, there is no
basis to ensure that the fuzzy sets can propephgsent the word semantics, while the fuzzy set
theory aims to simulate the remarkable capabilidfdsuman beings in processing and reasoning
with linguistic information.

Up to now, HAs can be regarded as the only theway manipulates directly on words and
their qualitative semantics and they form an algigbapproach to the word semantics, versus
the fuzzy set theory which is regarded as an aoadyproach developed utilizing the structure
of the analytic function space. In HA approach, ehger-based qualitativeemantics of words
determines formallyand algorithmically their quantitative semanticsThis is very important,
because it forms a formal basis to develop metlogies to deakimultaneouslywith the
qualitative semantics of words and their quantigatone, including the fuzzy set based
semantics of words, and this can be done only whkerd-domains are formalized. This is
reasonable and compatible with the nature of thedveemantics: words of natural languages
convey their meaning that are mapped to their s@eitems in the reality, but not conversely.

This formal basis comprises the following quanéfion characteristics:
2.3.1. Fuzziness model, fuzziness measure anddagantervals of words

In the algebraic approach, fuzziness of words péagentric role in defining not only the
distinct characteristics of words presented in fleistion, but also the fuzzy set based semantics
of words. This seems to be compatible with the ihess nature of the fuzzy linguistic
information and this contributes to make this apploquite different from the analytic one.
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Consider a linear HA1x = (X, G, C, H,, <) of a linguistic variablex. To define the
fuzziness of a word, we try to explain why the wbégdeen” is fuzzy. One may envision that
words become inexact or fuzzy because every naamglage comprises only a finite number
of words, while they are used to describe infinigens of the real world. In practice, “green”
points at maybe infinite instances of colours th&iuman community call “green”, as they still
contain a specific key feature of “green”. Follogithis observation, we now consider a vague
word x of X. By the hedge inheritanceH,(x) consists of all terms that still inherit a specif
genetic key semantics &f Similarly as the fuzziness of “greert,(x) can be interpreted as to
be thefuzziness modelf x ([7,8]. The set f,(x): x O X} forms a specific structure that can be
viewed as a neighbourhood basis of a topology gergeral sense and as a basis to define the
concept of fuzziness measure.

To introduce an axiom system of fuzziness meaBuref X, we assumeglLx to befree i.e.

hx # x, for Ox [0 X andJh [0 H, and let us consider amder-isomorphisni: X — [0,1], i.e. it is
an one-to-one mapping and preserves the orderoredhips ofX. In addition, it is necessary to
assume that the imad€x) of X is densein [0,1]. Our idea is that the fuzziness meadorés
defined for everyx as to bém(x) = closurd&f(H,(x)))|, the diameter aflosurdf(H,(x))). This and

the structure of fI,(X): x 0 X} suggest us to introduce the following axiomdraof
(fmD fm(c’) + fm(c’) = L andy"  fm(hu) = fm(u), for Du O X.
(fm2 Ox, y O X, Oh O H, fmhY _ "t hy = (), called the fuzziness measurehghedge).
fm(x  fn(y
(fm3) Puttinga =Z{h): hOH}andB =Z{(h): hOH'}, we havea +3=1.
The setclosurdf(H,(x))) defines an intervadll(x) O [0,1], whose values can be considered
as compatible with the semantics xfand, hence, it is called theizziness intervabf x.

Evidently, we have](x)| =fm(x) and, sincé is isomorphic, we haviex < kx & hx# kx= [(hx)
<0Okx) ,x O X

So, the concepts examined in this section seenetweby natural and they have close
relationshipswith each other. In addition, it can be seen frémlf and {m2) thatfm and the
fuzziness intervals are completely determined wngithe values ofm(c) and(h), h O H,
calledthe fuzziness parametest x. They are th@arameters for tuning to find optimized vague
words

2.3.2. Semantically quantifying mappingsiaf[6]

We have presented above that a given isomorphigraduces a fuzziness meastmreand
the fuzziness intervals of wordsl(x), x 0 X. In turn, a giverfm can induce an isomorphism,
denoted byu, called Semantically Quantifying Mapping (SQM).eTtalues of an SQM are
callednumeric semanticsf the respective wordsi,, is defined recursively as follows:

(SQM1) Uin(W) = 8 = fm(C), Um(Cc) = € —afm(c’) = AM(C), Um(c") = 8+afm(c").

(SQM2) y, (hx) =, () +Sath (T, fm(hx)|-ah ) fm(h %}
Wherew(hjx):%[1+Sgr(hjx)Sgr(h)hjx)(,B—a)]D{a,ﬁ}v forallj O[-apl ={j: 9<j<p&j+#0
}.

Thus, SQMs can again be determined when providiaduzziness parameter valuesxof
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2.4. Semantics core of words and enlarged hedge eltgas[10]

In fuzzy logic technology one usually also applptezoidal fuzzy set based semantics of
words, whose cores are intervals, whereas the obtesngular fuzzy sets are single value sets.
This suggests us to think of the fact that the séitsm of words, viewed as fuzzy information
granules, may have their kernels. In the fuzzyfisehework, the fuzzy set based semantics,
including the trapezoidal fuzzy sets, are assignadtively by the human user to words. Of
course, thavord kernelstill cannot be formalized in it. Whereas in thgedraic approach we
will show that this concept can axiomatically benfialized in a reasonable way, which leads to
the concept oeénlarged hedge algebrg&nHAS). To model the kernel of any waxd X, we
need an additional artificial hedge, denotechfywhose function is to generate the kernek.of
So,hpx is the kernel ok and considered as representingdbmantic core of wordghe way to
develop EnHAs is similar as the way for the ordndAs. The idea to develop the concept of
EnHAs is as follows: Any given linear HAx = (X, G, C, H,, <) can be enlarged to become an
EnHA 2x.n= (Xen, G, C, Hep, <) by an addition of, to H, and by introduction of the following
axiom (A5) for simulating properties of the semestcore of wordshyx, x O X (note that
Axioms (A1) — (A4) can be found in [3]):

(A1) The unit operatioV (i.e. the greatest element) ki either is positive or is negative
w.r.t. any operations iHl. Particularly,V is positive w.r.t. itself and the maximal operatloin
H™.

(A2) If u, v O X areindependenti.e.u 00 H(v) andv O H(u), thenx O H(u) = x O H(V).

(A3) Hedge inheritance For Ox O X, Oh, k, h’, k' O H, we have

(i) x# hx= x O H,(hX).
(i) h# k& hx<kx= h’hx <k'kx.

(iii) If hx# kx, thenhx andkx are independent.
(A4) ForOu O X, if v H(u) andv < u (v = u), thenv < hu (v = hu), for everyh O H,.
(A5) Axioms for the semantics core of wofi8]: Forx, y I Xe, andx 2y,

(i) h’hex = hex, for h' [0 Hey, i.e.hex is always a fixed point, and, farl] X, hox = x if and
only if x is constant, otherwisgx andx are incomparable.

(i) Ox,yOX,x<y=hx<y& x< hpy.

It is interesting that the statements (i) anddi#@ sufficient to describe the semantics cores
of the words inX: the kernels of the constants are just themsethieskernel of a word must be
included in it, but inclusion cannot be describedhe order-based structures and, therefore, they
should bencomparable Nevertheless, it can be proved in the theoryrdf&s thatthe fuzziness
intervals of the kernels of words should be inctugrethe fuzziness intervals of their respective
words

The following properties ofixe, describe the semantics core of the words and tter-or
based structure of,,. First, we introduce some notations: for the ulyiley setX of 4x we put
Xe={xOX: K =Kk} and Xy = {x O X : x| < K}, while for Xe, we haveXenk = X O {hou : u O X
1)} and xen(k) = {X O Xen |X| < k} = X(k) O {hoU uld X(k—l)}-

2 Suitably, this terminology is used instead of im previous ones, hedge heredity, e.g. in Nguyenhviachler, 1990.
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Theorem 2.1 Let 2x*" = (Xon, G, C, Hep, <) be an EnHA of a free linear HAx = (X, G, C, H,
<). Then,
(1) Xen=X 0O {hox : x O X\ C} and, forx O C, hox O X.
(i) For Ox, y [0 Xep, we havex <y & x < hgy & hox <y & hgx < hgy. Consequently, Hox: x
O X} is linearly ordered.
(iii) The setXenk = X0 {hou : u O Xy1)} O Xenis also linearly ordered.

Since the concept of the fuzziness measure of wandsits axiomatization are almost the
same as in the case of ordinary HAs, except thd okmtroduction of the fuzziness measure of
the constantdm(0), fm(W) andfm(1), which are possibly different from zero, and lué specific
hedgeh,, 1(hy), its axiomatization that can be referred to [isdpnored here.

Then, giverfm, the fuzziness intervals will be defined as fokow

Definition 2.1. Given a fuzziness measure of an Enf&,, of a linguistic variabler and let us
assume that each wordd X, of a linguistic variablex is associated with an intervalx) O
[0,1], the normalization of the reference domainxoflhese intervals are said to form a system
of fuzziness intervals of the words_afz, provided the following conditions hold:
(fil) || =fm(x), for all x O X, where [J(X)| denotes the length of the interik).
(fi2) The set {d(hX) : h O He forms a (binary) partition of(x) and the order of its
intervals is in accordance with the order of tlasisociated words, i.dJ%, y O {hx:h [
He) ( X<y = 0(x) < 1(y)).

To point out the correctness of this definition ahd structure of the fuzziness interval
family we have the following.

Theorem 2.2 Definition 4.2 is correct, i.e. for a given fumess measurém, there exist
uniquely a system of intervals of the wordsaof, satisfying the conditions (fil) and (fi2) in the
sense that the fuzziness intervals of every woraniyn two such systems differ from each other
only at their end points. In addition, puttifig= {0(y) : y 0 Xend = {0(X) : x O X} O {O(hox) :
x O X1}, the structure of the fuzziness intervalsitfiave the following properties:

(fi3) Fory O He(X) and hence # x, we havel(y) O O(x). Especially,J(hgx) O 0(x), Ox O
X.

(fi4) For every integek > 0, the intervald](x), x 00 X form a binary partition of [0,1]
and their order is in accordance with the ordeheir associated words. That is we have:

OX, Y O Xeng X<y = 0X) < O(y).

(fi5) For everyk, I is topologically finer thar, 4, i.e. every fuzziness interval liq should

be included in a certain fuzziness interval,in

(fie) The set {d(hyx) : x O X} is linearly ordered and its order is in accordameith the
order of their words. Moreover, it densean [0,1] in terms of the ordinary topology.

The concept of SQMs is now replaced with the concépnterval-valuedSQMs, whose
values are taken iR1([0,1]. For short, for every word-s¥t[] X, we denote byY the set fipx

:x 0O Y}

Definition 2.2. Let 2Xen = KXen, G, C, Hen, <) be an EnHA of a given ordinary hedge algehka
An interval-valued mappin§y: X., — PI([0,1]), whose interval-values are right-closed #aftt
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open, except when their left end-point is 1, isldaibe an interval-valued quantifying mapping
(IVQM), provided the following conditions hold:
(IVQM1) f preserves the order of the words<ini.e. it is a homomorphism oXg, <) in the
category of the ordered sets. Thati$x,(y 0 Xen)(X <y = f(X) < f(y))
(IVQM2) f preserves the functionality of the hedyggi.e. (Ix O Xgp)(f(hox) O (X))

(IVQM3) C(f(hoX)) = [0,1], wheref(Y) = {f(x) : x O Y}, Y O Xen

Axiom (IVQM3) ensures that theumeric interval semanticef the words ofx should
approximate any numeric values in [0,1]. So, wetbatthe concept of the IVQMs is defined in
a very natural way and their axioms are minimalst@ints and, hence, it seems to be most
general. Although such IVQMs are defined by geneaaditions related directly to the IVQM
concept, it is expected that they should even therin a strict relation with the fuzziness
concepts, the fuzziness measure and the fuzzimdssvadls of words. If the answer is
affirmative, it contributes to demonstrate the siness of the algebraic approach to the
semantics of words.

Theorem 2.3 Letf be an IVQM of the EnHA2X;, of a free LHAZX. Then, for everyx [ Xep,
(i) C(f(hoHi(x))) = C(f(HI(X))) = C(f(Hen(x))) U PI([0,1]). Especially, fox [ (Xen\ X) U C,
we haveC(f(H,(X)) = C(f(x)).
(i) T(x) = f(hoX).
(i) finduces a functiofim : Xen — [0,1], defined byimy(x) = [C(f(H(X)))], especiallyfrmy(x)
= [C(f(¥)], forx O C O {hex : x O X}, which satisfies the first two axioms of the fuzziness
measure ofdx., and, therefore, it is calledsemi-fuzziness measwe X,

In the paper [10], we have shown that the EnHAsroff formal basis in which the word
semantics produces the trapezoidal fuzzy set bssedntics of words and can be applied to
solve classification problems even more effectivéign the method examined in [2] using
triangles.

To end this section, it is worth emphasizing thiéhaugh both fuzzy sets and hedge
algebras all deal with words as uncertainty lingaignformation, only hedge algebras can
handleimmediatelywords and deal with thegualitative semantics. Especially, hedge algebras
can establish a strict mathematical foundation db@sean axiomatization manner for this. It is
important that there are many basic and fundaméatés which support for this assertion, as
discussed above.

Since the more fundamental a theory, the more smswxdand effective applications of the
theory can be achieved, we may hope that the HAryhean solve problems of different areas
more effectively than the fuzzy set based countérpathods.

3. THE HA APPROACH TO COMPUTING WITH WORDS

The terminology of Computing With Words (CWW) wased first in 1996 by Zadeh in his
study [11] this concept has been taken form in plagter. Since then CWW has attracted many
attention of the fuzzy community and has been sitaty investigated, especially, it can find
various interesting applications [1]. Neverthelessit is discussed above and pointed out in [9]
that, since the fuzzy set theory does not origiimataediately from the order-based semantics of
words, there is a “formalized gap” between the waadd their fuzzy set based semantics. This
may cause some significant shortcomings in disapgiroaches to CWW, as discussed next.
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An important area of application of CWW is the dgmn making in a linguistic data
context, for which linguistic scales and mathensticepresentation of words should be
examined. To limit these shortcomings of CWW irstarea, the authors of [9] have argued that
computing with words in a linguistic scateust be realized on word quantitative semarsicd
the words of the scale are used for human usergessipg their assessments in decision making.
They have also formulated explicitly two charadates of linguistic scales for decision making:

“Property 1: Linguistic scales should have a sernaapresentation model with an explicit
declaration of qualitative and quantitative sen@ntf the linguistic words of the scales. The
gualitative semantics of terms is devoted to esperexpress their linguistic assessments, while
the quantitative semantics of terms is exploiteddéwelop the computationally operational
mechanism of the scales.

Property 2: Linguistic scales should be associati¢il their respectivesemantic linguistic
scalesconstructed based on the proposed semantic repaése model, which is equipped with
an adequate computational structure so that itosed with respect to necessary operations,
including aggregation operators.”

Then, in order to avoid the above mentioned shoriicgs of existing approaches, they
propose three requirements for dealing with linGciiscales and constructing a mathematical
mechanism, called in that papsemantic linguistic scalegor computing with words of the
linguistic scales:

“Requirement 1:Linguistic representation models of linguistic Iesashould be developed
based ora clearly declared qualitativend quantitative semantics of linguistic wordghich are
related with their inherent order-based semantissraich as possihle

Requirement 2There should be a suitable formalized mechanissedan the declared
gualitative and quantitative semantics of words donstruct a semantic linguistic scale
characterized byProperty land Property 2with obvious computational characteristics useful
for practical applications

Requirement 3The semantic linguistic scale should bring necessatvantages to develop
computational operations for developing decisiorking methods, including aggregation
operators, in particular. The constructed semariiguistic scales should belosed with
respect to the developed aggregation operators.”

Based on these, it can be drawn that linguistitescadeveloped in the existing approaches
are very difficult to satisfy well these requirentgnsince in Section 2.1 we argue that the
gualitative semantics of words in natural languaglesuld be defined based on order-based
semantics of the domains of linguistic variablesr Fhstance, since assigning words of a
linguistic variable to fuzzy sets by a meaning magM, in generalM does not preserve the
order-based semantics of words, noting that rankirgy sets is a difficult problems. Therefore,
the approaches relying upon the extension prinapliizzy sets [12] have no formal basis to
link with the order based semantics of words. Ttaldsh such a formal basis, linguistic
domains should be mathematically formalized.

For the symbolic approaches, e.g. f124], one tries to manipulate immediately the words
of given linguistic scales utilizing their ordertimeir scales. However, the quantitative semantics
of words is not explicitly declared. So, the quastis that on which quantitative semantics the
developed operations on such scales act on? Anglyjzow the proposed operations on the
scales of symbolic approaches were defined we rézedhat the indexes of the words in the
scale of interest are utilized to define the conmgumechanism of the scale. As it is discussed
above, operations of the scales should work owthrels semantics and, hence, the question is
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that may we declare explicitly that the quantitatsemantics of the words in the given scales are
their position indexes in the scales? It seemsitlimtmpossible.

The HA approach provides a formal basis to develmpputing mechanism for linguistic
scales by discovering the formal structure of thguistic scales and developing the respective
semantic linguistic scales associated with thenis Tdrmal basis has the following interesting
main features:

1) The semantics of a word present in a given lingustale is determined mainly in the
context of the whole of its linguistic variableg.iit is defined in théree (infinite) HA
AX associated with the variable. However, a scdl@it® and the semantics of its words
is changed a bit by the influence of their neigimpmvords in the scale. For example,
the semantics of the wordy6od of the variable QUALITY of a technology project
appearing in between its neighboring wordsetiuni and “extremely godtof a scale
is changed when it appears in betwegrather good and “very good in another scale.
That is, the specificity (vs. the generality) ofvard can be changed, but certain specific
key semantics of the word are still maintained, mwite neighboring words are changed.

2) The structure of the linguistic scales determinegproduces their respective semantic
linguistic scales based on the structure of thealsbe hedge algebra. In other words, the
gualitative semantics of the words of a given listja scale determines its computing
structure of its semantic linguistic scale. Thiswmes, based on a formalized basis, that
when someone deals with the semantic linguistites@s computing structure ensures
that he still manipulates directly with its wordsa certain extent.

Now, we describe how a given linguistic scale catednine its 4-tuple semantic linguistic
scale based on the formal basis proposed in [9].

Let be given a linearly ordered linguistic sc@le {x :j = 1, ...,n}. T is said tosuperior-
closedprovided that ifT contains a chilchx, for some hedgé, thenT must also contain the
word x (words: strings of hedges and an atomic word).diebyx_ andx respectively the left
adjacent and the right adjacent of the word the T-contexfi.e. in the scal@). Remember that
X denotes the set of all words of lengtp, wherep > 0 is an integer. Then, the following can
be proved:

Proposition 3.1 Let T be a superior-closed word-scale of with a specificityl (the maximal
length of the words i). Then, for everx O T\ C, x_ is also the left adjacent word »fn the

X ,-context, wherep. = max(k|, K|) < | andxg is also the right adjacent wordofn the X o

context, whergr = max(ks|, K|) < I). Particularly, ifx is of specificityl, i.e. k| =1, thenx_
(respectivelykg) is also the left (respectively the right) adjacenm ofx in Xj.

This proposition asserts that we can determindetigright) specificity degree indicated
by p. (pr) of the given word by calculating the index oi((m (X(w)' It is the basis to calculate

the interval-semantics of using the similarity intervals of the terms )'Qm (X
for a givenk, these intervals of the degrieare only defined for the s¥j):

(w), noting that,

Definition 3.1. Let be given the fuzziness parameter valuegxoandv is the SQM defined by
these fuzziness parameters. Then, for exeryT, the interval-semantics afin the context off
is defined to be the intervi(x) = 1.(X) O 1r(X), wherel (X) = LS, = [Iptgq(x), U(X)) withp. =

11
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max(k.|, k) andlg(x) = R, (0 = [u(x), rptgm()Q) with pr = max(ks|, Kk|) with § (3 denoting the
similarity interval ofx with degreep, i.e. 5 (¥ is defined for everyx [ X,.

Then, the 4-tuple semantic linguistic scale ofdghen linguistic scalf is calculated by the
following proposition:

Proposition 3.2 Let S be a superior-closed linguistic scale with a dpEti level | of a given
hedge algebrax = (X, G, C, H, ). Then, for given fuzziness parameter valueg xfthe setS,
={(s lag(9), US), Iy : s S rs 0 1y4(s)} satisfies the following primary properties:

() S, is 4-tuple semantic linguistic scadessociated witls.

(if) Every intervall,s(s) is defined and calculated based on the semaottitise terms of

AX: Nx9(8) =1(s) O Ix(s) and
lag(s) = =U{ ZA%) : X 0 Xz & LAX) O [U(S_ 5 ) U(Srpa))}-

To capture more details of this formal basis of tdomstruction of semantic linguistic
scales, the reader can refer to [9]. However, thth above presentation we can see that the
construction examined in that paper is based arastrict mathematical and logical (semantic)
basis and, therefore, it is calledundconstruction of semantic linguistic scales.

To show the benefits of the HA approach to suchadlpm of CWW, a simple decision
making problem is examined in [9]. Let us considedecision making problem with two
alternativesA; andA, and three criteri&,, k = 1, 2, 3. For simplicity, we assume that only one
expert use the same linguistic scale for all thoeteria to express the assessments of her/his
evaluation of all the alternatives under considematvith respect to these distinct criteria. In
addition, to make a clearly visible difference bé tproposed approach from the 2-tuple based
approach, two linguistic scales, the one is a prepbset of the other, that will be applied in turn
are given as follows:

1) The scale
S ={s;:i=1, ..., 9} ={E_badV_bad bad R_bad mediumR_goodgood V_good
Excellent.
2) The scale examined in Example 4.1 with
S={s;:i=1, ..., 5} ={ad R_bad mediumgood Excellen} = S, \ {E_bad V_bad
R_goodV_goog,
where,E_bad= 0, Excellent= 1.

With the given independent fuzziness parameteresgi() = 0.484 andm(c) = 0.5687,
the 4-tuple semantic linguistic scales associatétd & and S; are calculated and given as
follows:

S consists of the following 4-tuples:

(E_b, [0, 0.65), 0.31r,), Ory 0 1,(0); (V_b, [0.65, 2.07), 1.33;,), Or, O I5(V_b): (b.,
[2.07, 3.49), 2.75;3), Ors O Io(b); (R_b, [3.49, 0.5), 4.27¢,), Urs O 15(R_b); (W, [0.5, 6.21),
5.69,15), Ors 0 1,(W); (R_g, [6.21, 7.36), 6.77te), Ors 0 1,(R_0); (9. [7.36, 8.43), 7.91ry),
Or; O 1x(9.); (V_g, [8.43, 9.51), 8.99;), Urg T 1,(V_g); (Excellent[9.51, 1.0), 10.0r), Org O
().

S consists of the following 4-tuples:
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(b., [0, 3.49), 2.75r,), Or; O 1y(b.); (R_b, [3.49, 0.5), 4.27t,), Or, O 1(R_Db); (W, [5.0,
6.77), 5.69y3), Or; O 13(W); (Good [6.77, 8.99), 7.91,), Ur, O 14(G.); (Excellent [8.99, 10.0],
10.0,r7), Or; O 1y(Excellen}.

Assume that the linguistic assessments of the tteonatives in question of the expert as
shown in Table 3.1 can be considered as his aseatsin the context of each of the two scales
S andS,. Note that the weights of the criteria are alseegiin the table assuming that the
selected aggregation operation is the weightedageer

Table 3.1The evaluation provided by the expert with respecthe given criteria and their weights.

Criteria and weights _ _ _
Alternatives Cl, Wy, = 0,25 Cz, W, = 0,51 C3, W3 = 0,24
Aq S = Excellent §=medium $=good
A, s, =R _bad S = Excellent $=R_bad

As discussed in the first feature, their semardfdbie expert’s linguistic assessments given
in Table 3.1 may be changed a bit by the influenicpossible changes in their left and right
adjacent words in each scale. However, as thesssaments are i% [1 S, we have an intuitive
basis to believe that, under this situation (theesavord-assessments aBdis extended t&),
the expert decision cannot be changed w8eis extended td&,. As we expect, it has been
shown in [9] that while his decision based on tHeigle semantic linguistic scale remains the
same for botlg, andS; (A, is more preferable thaly), it is changed when linguistic 2-tuples are
applied. This shows that the theory of hedge akgbeems to provide a reasonable and sound
mathematical basis for CWW.

4. APPLICATION IN SOLVING SOME CLASSIFICATION PROBL EMS USING
FUZZY RULE BASED SYSTEMS

A natural question is that when applying this atg#b approach to knowledge based
systems, which novelties of methodologies and tegcias it can bring out for enhancing the
performance of knowledge based systems? Basedfondamental formalized basis that the
algebraic approach can provide, there are manynayes we may expect [2, 10]:

- The design of word&hen regarding words as playing a centric ratajlarly as the role of
human-centric problem, it ior the first timewords along with their fuzzy sets can
concurrently be dealt with and, moreover, be irdegt as a whole. This permits to design
words for specific applications, noting that womate application-dependent. For example,
the word “young” of age and “fast” of speed are leagion-dependent, as the meaning of
“young” is different when they are used in the “Widrof the only scientific staffs, or of the
only scientific experts, or of the population oki@te, and so on. Therefore, while words
must be pre-specified in the fuzzy set based melbgdks in many studies, in the HA-
approach they are selected by learning strategimgarly as the way the human beings
acquire their knowledgérom reality. This would, of course, enhance tleef@mance of
fuzzy rule based systems (FRBSSs).

- The generalityand specificity of words This allows develop methods that are able to
simulate the interaction between words and realsdgas (domain reality) as well as between
linguistic rules and datasets. An emphasis shoalchdde on the fact that theneralityand
specificityare significant characteristics of words for cagmg the realty. We will see in the
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sequel that there are sound techniques for dewlithgthese characteristics of words in the
algebraic approach.

- Reducing complexityin many existing methods in the literature of F3B all possible
combinationsof word-values of dataset features are taken awcount. Evidently, the
number of all such rules teo hugein comparison with the cardinality of a given data In
the HA-approach we can avoid this problem, utiligihe similarity intervals of the words
which form a binary partition of their feature uerse. Then, a feature-value of the given
dataset falls into only a unique similarity intdref a certain word. Therefore, every pattern
defines only one linguistic fuzzy rule, called lsasille. This decreases significantly the
number of rules to be considered. We will point tht this technique offers meaningful
role in solving problems.

- Knowledge interpretabilityA crucial criterion to measure the interpretabilof linguistic
knowledge is to be intended as “user ability talraad understand” that mainly concerns “a
comparison between the semantics of a knowledge drad the semantics of the knowledge
acquired by a user after reading and understantfingknowledge base.” When words
appearing in the knowledge can be designed prapaslglescribed above, they may be just
what the user actually understands and, hence kilogvledge interpretability can be
guaranteed.

With these advantages we expect that the HA-approsy ensure enhancing effectiveness
in designing FRBSs, including fuzzy rule based sifastion systems (FRBCSs). The next
simulation results illustrate this assertion.

4.1. The design of fuzzy rule based classificati@ystems using triangular fuzzy sets

The problem is as follows: Consider a classifiaafooblem? given by a datas®& = {p, =
(d,C):dO0D,COC,I =1, ..Np}, whered = (d 1, d >, ...,d,) OD of ndimensionsC = {C,
:1=1...,M}is the set of class hames. Develop method basddulti-Objective Optimization
Using triangular fuzzy sets to solewith high performance and low rule base complexity

Because of limited space, we present here onlysitmellation results. For the method’s
details, refer to [2].

Table 4.1 Comparison of fuzzy rule base complexity using Wilcoxon test at level = 0.05

VS R R~ | Exact P-valug Asymp. P-valug Confidence interval Exact Confidence
All Granularities 83.0 | 70.0 >0.2 0.740367 [-52.4985 , 25.0426] 0.95524
Prod./1-ALL 153.0 | 00.0 1.5258E-5 0.000267 | [-235.1573 , -60.2954] 0.95524
Prod./1-ALL TUN | 121.0 | 32.0 0.0348 0.033154 [-29.4122 , -0.5219] | 0.95524

Table 4.2 Comparison of FRBCS performance using the Wilcotest at leved = 0.05

VS R R | Exact P-valug Asymp. P-valug Confidence interval | Exact Confidence
All Granularities |134.0 19.0 0.004638 0.006040 [0.740583, 3.436272] .95324
Prod./1-ALL 136.0 17.0 0.003158 0.004507 [0.639143, 3.117368] .95324
Prod./1-ALL TUN [121.0 32.0 0.034800 0.033154 [0.116358, 2.567368] .95324

The proposed method is applied to 17 classificatiaatasets found in
http://sci2s.ugr.es/keel/ category.php?cat=cldere, we exhibit the statistic comparison tests
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using the Wilcoxon test made on the simulationItesaf the datasets and analyze some benefits
of the approach. The comparison results given ipleld.1 show that the complexities of the
fuzzy rule bases obtained by the proposed methediaver or more or less equal to the
complexity of those obtained by the counterparthmés. Whereas, the statistic comparison
results given in Table 4.2 show that the FRBCSgyded by the proposed method outperform
the FRBCSs designed by other methods.

The question is how these advantage
discussed above are exposed in this applicatiof? | , )

First, the words integrated with their triangles ofp 0.2 0.4 0.6 0.8 1
all features can actually be designed and they a) The fuzzy sets of the terinsX,

are generated by the obtained optimal fuzziness

parameters of the dataset features. Fa

illustration, consider dataset Mammographic for Q
which the optimized solution indicates that the 7c) , n
maximal length H| of the words of the feature 0 0.2 0.4 0.6 0.8 1
j, forj=1to 5, are found to be 3, 2, 3, 2 and 2, b) The fuzzy sets of the terinsx,
respectively. The fuzziness measurescofof
the five features are, respectively, 0.36260

0.499927, 0.519758, 0.447016 and 0.427377.

1

W_hile, the fuzziness measures of the hetge 0 UWVE)g 2 : oa TALLS) g g WG
(Little) of the features are 0.366572, 0.529550, .
0.577176, 0.655763 and 0.320246. They €) The fuzzy sets of the terms<s

produce the designed words and their trianglessigure 4.1.The fuzzy sets designed for th& 3

e.g. for the feature F[3], as exhibited in Fig.4.1.  featureof the Mammographic data.

As the maximal length of F[3] is 3, i.e. the

optimal solution points out that the words of tipedficity of degree 3 are needed. We see that
the fuzziness parameters obtained as above deteramnappropriate “word stock” for each
feature potentially used for formulating knowledg#es. In reality, which words are actually
present in the rule base of a designed FRBCS detrahgly on the given dataset. In the fuzzy
set framework, the size of the mentioned “word Igtas limited rather strictly and should be
prespecified in many approaches, maybe becauséas¢o consideall combinationsof the
feature linguistic values to generate the initiales. However, it is not the case of the HA
approach: we start with only the rules producednfithe patterns of a given dataset, i.e. the
number of such rules is not greater than the calitinof the dataset. The “word stock” of
potential words produced as above can be reasotally that seems to be flexible, reasonable
and compatible with the way human acquires thégstu

The “stock” of the designed words seems to meeefipected requirements. Although there

Table 4.2.aFrequencies of the occurrences of the designedibtic values of all features in the 30
rule bases obtained by performing the 10-fold cradislation method for Mammographic dataset.

0 3/0,|0,|VVE| Ve |LVC | ¢ |LLC| L¢ [VLG| W |VLE| Lc" |LLc*| ¢™ |LvcT| Ve VWG|l 4|1 5|1 4
FI1] 34 o 8 12 1 17
F[2] 1 29 11 16 36 6 0
FBI| 1| 5| 3 6 7 0 g 2720
Fl4] 5] 7 1 4 2¢ 21|11
F[5] 0 25 3]0

1 (11|10, O 0 0 Of 6| 3( g 210 | 61| 0| 89 8 6 | 12| 37/55|20
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are until 30 rule bases produced by performing @dold cross validation method repeated
three times on the dataset Mammographic, it is rvbgethat a considerable number of the
designed words of the “word stock” were not usefbtmulate the optimized rule bases as it can
be observed in Table 4.2.a. Indeed, while the “vgtodk” of the potential words for the dataset
has 70 words (two features of having words of lergB have 20x2 words and three features of
having words of lengtk 2 have 10x3 words), there are only 28 words tretuaed to formulate
the rules of the 30 rule bases, i.e. there aremiBsad words. This shows that which words
necessarily selected from the “word stock” to esttigtimal rule base are dependent mainly on
the given dataset and that the genetic design ofisMor a given classification dataset actually
plays a meaningful role in simulating the humancpss of drawing a rule-based knowledge
from the real world: his natural language is vievasda word stock and he tries to formulate his
linguistic rules representing his knowledge whibrefully selecting appropriate words in his
word stock. However, an emphasis should necesdagilynade on the fact that although 42
words are unused, they play still their meaninghle, as their presence does contribute to
determine the necessary semantics of the wordistock, noting that the word semantics are
context-dependent as it can be observed in Figdre 4

Similarly, in the HA approach the generality-spetiy of words, which depends on
whether the word length is large or small, playgoaheaningful role. For example, Tab.4.2.a
demonstrates that, among the words present inQh&l8 bases, there are 147 occurrences of
words of length 1 and 163 occurrences of wordgiwdgth 2 and only 47 occurrences of words of
length 3. Note that the more generality of wordsspnt in a rule base, the smaller number of its
rules. In contrast, the more specificity of the dgpresent in a rule base, the more exact the
designed fuzzy system can classify. This showstti@atHA-based method can find a tradeoff
between the general and the specific words selefttad the word stock to represent the
knowledge drawn from the dataset.

Note that, in accordance our knowledge, the benefialyzed above cannot be observed in
the existing approaches.

4.2. The design of FRBCSs using trapezoidal fuzzgtsbased semantics of words

In Section 2.4 we have presented the modellingctire of the word semantics, another
advantage of the HA-approach in modeling differémtitures of the inherent qualitative
semantics of words. It is observed that words veewas fuzzy information granules have
naturally their kernels. In accordance to our kremgle, this concept has not formally been
defined and examined in the fuzzy set frameworkth&t same time, we may imagine that this
concept is not easy to define in this frameworkxtNeve will show moreover that it will be
applied to generate trapezoidal fuzzy set basecsirs of words and, then, applied to solve
classification problems. Again, according to ouokedge, in general in this research field, the
fuzzy sets of words are only assumed to be triargulzzy sets. One of obvious shortcomings
of this fuzzy set shape is that the membership edegof these fuzzy sets around their cores
decrease very quickly. So, it is expected thatezamal fuzzy sets will provide another
alternative to design FRBSs and even be better thangular ones, where, for brief, the
proposed method above is called Triangle-Method.
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Table 4.3.The simulation results of the Trapez-Md vs. thiafigle-Md using PSO algorithm.

Dataset Trapezoid-method Triangle-method

Diff(Pte)

DIff(#R)
DIff(#C)
Diff(#R*#C)

#R | #C |#R*#C Ptr | Pte | #R | #C | #R*#C| Ptr | Pte
Australian 5.0D 8.37 41.8587.7286.86 4.1Q0 8.83 36.2088.0686.38 0.90-0.46 5.63 0.49
Bands 7.00L1.17 78.1976.28§72.10 6.00 8.7Q0 52.2076.1772.80 1.0Q 2.47 25.99-0.7(
Bupa 8.9719.03170.7077.5469.41 8.8321.20 187.2(78.1368.09 0.14-2.17 -16.50 1.3Z
Cleveland 16.4388.81640.1969.8663.4017.1744.37 761.8373.5459.46-0.70-5.50-121.64 3.94
Dermatology;10.8717.43189.4696.8895.5210.9018.17 198.0%98.0396.07-0.03-0.74 -8.59-0.55

Glass 16.8(29.07488.3880.2672.7813.7732.30 444.7780.2469.37 3.03-3.23 43.61 3.4]
Haberman 4.005.0Q9 20.0077.6477.43 3.00 3.4Q0 10.2076.9175.76 1.00 1.6Q0 9.8Q 1.67
Heart 8.0815.03120.6988.0784.57 7.61416.10 123.4989.4584.20 0.36-1.07 -2.8Q 0.37

lonosphere 8.639.7Q 83.7194.6790.98 8.9710.04 90.3395.3590.22-0.34-0.37 -6.64 0.74
Mammogr. 7.2011.40 82.0885.3184.46 6.8113.43 92.2686.0683.93 0.33-2.03 -10.18 0.53

Pima 5.9Y 8.43 50.3378.5376.66 5.9110.20 60.8978.2876.18 0.00-1.77 -10.57 0.4§
Saheart 6.2469.33 58.4174.5570.27 6.3013.77 86.7576.3569.33-0.04-4.44 -28.35 0.94
Sonar 5.97 9.03 53.9186.8477.29 6.8011.73 79.7688.3976.80-0.83-2.7Q -25.85 0.49
Vehicle 11.0819.60216.1971.6468.1211.6020.77 240.9370.5467.30-0.57-1.17 -24.74 0.84
Wdbc 4.97 8.371 41.6097.4095.8% 4.87 7.67 37.3597.6296.96 0.1Q 0.79 4.25-1.11
Wine 5.87 7.171 42.09 1.0098.52 5.57 6.43 35.8299.8898.30 0.30Q 0.74 6.2 0.27

Wisconsin 6.98 8.3Q 57.5296.7496.4% 6.9310.73 74.3697.8196.74 0.00-2.43 -16.84-0.29

Table 4.4 Comparison of rule base complexity using the Witnotest at levek = 0.1 for Trapez-Md
VS R R™ | Exact P-valug Asymp. P-valug Confidence interval| Exact Confidence

Triangle PSO-Md | 107.0| 46.00 0.15938 0.142245 | [-16.2359, 1.42545 0.90162

Similarly as above, we emphasize that in the HAra@ph we can develop methods to
produce algorithmically trapezoidal semantics ofrdgobased from given fuzziness parameter
values. Since we can apply the same method of REBOS’s design used in Section 4.1, we
have a formal basis to show the meaningful rol¢hefdesign of words based on the EnHAs
presented in Section 2.4. To deal with this quastssume that we use the same method for the
design of FRBCSs, except that words with trapezdiday sets will be designed instead of the
triangular ones. The new method is called Trapektéthod. In addition, if the same
evolutionary algorithm is applied and the same nema generations for running the algorithms
is specified, we are in position to ensure thay ahk word design factor can influent on the
possible differences of the simulation results leetvthe examined methods. Thus, the both
methods are run with the usetbé same PSQParticle Swarm Optimizatiorglgorithm and the
same number of the generations which is specifiedld®0. The obtained simulation results of
the both methods are presented in Table 4.3. &t diance we may conclude that while the rule
base complexity measured by the Diff(#R*#C) of atinalatasets are negative, i.e. the
complexity of the FRBCSs designed by the Trapeiéathod has a tendency to be less than the
one of the FRBCSs designed by the Triangle-Metlioeke are only 4 datasets for which the
performance of the former systems is less tharotie of the latter systems. Statistically, the
Wilcoxon test results given in Table 4.4 and 4%oatonfirm these conclusions. As discussed
above, this shows that the only factor that makesTrapezoid-Method better than the Triangle-
Method is the use of the trapezoidal fuzzy set dasenantics of words.
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Table 4.5Comparison of FRBCS performance using the Wilcoesh at leveb = 0.05 for
Trapezoid-Method.

R R Exact P-valugl Asymp. P-valye Confidence interval| xadE Confidence
121.0 32.0 0.0348 0.033154 [-17.65545 , 4.9465] .958p4

Since in [2] it is demonstrated that the Triangflethod is better than the counterpart fuzzy
set based methods, these results confirm the nufahiole of the design of words with the
trapezoidal fuzzy set based semantics and, heame@ractical value of the HA-approach [10].

4.3.The design of hedge algebra based controllers

Analyzing single-conditional fuzzy linguistic rule natural language, we have a feeling that
human beings formulate their fuzzy rule based obrknowledge acquired from the reality
based on their discoverirdjrect or inverseproportional relations between physical variables.
For example, the relation between two variablestete intensityl and the seed®P of an
electrical motor can be formulated as Flis small thenSPis large”, which is at least deduced
from the inverse proportional relation between twoneric physical variables “intensity” and
“speed” observed by the user. That is the ordeedasemantics of words is essential for
representing human rule based knowledge. This @uplihat any mathematical model
representing such knowledge must preserve theseansemorder relationsof linguistic
variables. In the case of multiple-conditional fydinguistic rules, the relation between two
variables is much more complicated, however, evelg is formulated based on such relations
above between every two variables.

Control knowledge is expressed by the followingafdtizzy linguistic rules:
If x1isAzand ... andg, isA, thenyisB;,i=1, ...,n (4.1)

These rules describe dependencies between linguatiablesy, j = 1, ...,m, and?; whereA;,
j =1, ...,m, andB; are words of the linguistic variableg; andv; respectively, for=1, ...,n.

HAs have found some applications to solve effidierbme control problems published in
[15 - 18, 19, 20]. Although they are not many, but tigaificant thing seems that this efficiency
comes just from the soundness of the HA-approacthi$ section, we explain more obviously
why we assert that the HA-approach to this fieldasnd and, for an additional illustration, a
new result will be presented shortly to expose @ditenal benefit of the HA-approach. In [19,
20] we have pointed out several weak points offtlzzy set based approach to solve control
problems. Here, in order to show fundamental achgeg of HA-approach we summarize main
components, considered as hard problems, thaeimtkithe effectiveness of a general controller
in the fuzzy set framework:

- Membership problemTo design the semantics of words of linguisticialales present in
(3.1), which are represented by fuzzy sets designethny waysind assigned to words by
the designer. The parameters for defining the desiduzzy sets are many since these fuzzy
sets are in general desigriadependently from each other

- Implication operator problemTo represent every fuzzy ruteof (3.1) as a fuzzy relation
R(x, y), i = 1 ton, wherex is anmrvector, utilizing ant-norm or t-conormto aggregaten

conditions of the rule and an implication operates v, u, v [1 [0,1], to model the if-then
semantics.
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- Aggregation problemTo aggregate also the obtained relatiBn® produce one relatidr,
which can be considered mathematical model of the control knowlediyen by (3.1).

- Composition inference rule problermo define a composition inference rule basedhen t
following scheme: for an inpw,, compute the output (control actiog)as follows:

() By = A(X) ° R; and (ii) yo = defu£By), whereA(Xo) is a fuzzy set obtained frory by a
fuzzification methods is a selected composition adefuzis adefuzzificatiormethod.

We see that such a method depending on sewaigknown hard problemsnentioned
above seems to be so complicated that it may ntekenethod to become a black box, i.e. it is
difficult to recognize the behavior of the methodrprove it. More importantly, the mappings
of words to fuzzy sets and control methods desdriabovedo not preserve order-based
structure of the linguistic fuzzy control knowledge. This ake point seems to be very
fundamental on the mathematical and logical viewpaind it may make the effect of these
methods decreased.

In the HA-approach the general method is very semdbwever, we first discuss about the
soundness of the mathematical foundation for tbpgsed method.

The soundness of the HA-approach originates from mvain facts. The first one is the
order-based nature of linguistic knowledge, asufised at the beginning of the section. The
second one is that HAs model properly the ordeetbagmantics of the words of variables. The
order-based semantics of words appearing in hummaowlkedge seems to be crucial and
valuable, but it was ignored in almost studieshi field. For example, given a well-known rule
saying that “if body temperature is very high thers serious”, we may imply that “if body
temperature is extremely high then it is very agioThat is a proportional relation between the
variables TEMPERATURE and HEALTH_STATUS in terms tbfe order relation on the
linguistic domains appears.

Fortunately, hedge algebras model the order-basethrstics of words and SQMs are
isomorphisms in the category of order-based strastuBased on this, the following reasoning
method was proposed:

- Consider every rulg of (3.1) as defining a linguistic poindg, ..., Am, B). Hence, the rules
in (3.1) determine approximately a linguistic sag& . Note that the shape & depends
on the order relationships between the words oftetaleen the variables present in (3.1).

- Define suitable hedge algebras of the variablesgmtein (3.1) and specify fuzziness
parameter values of each variable. Then, the SQf the variables are fully defined
(Section 2).

- Usingby, j =1, ...,m, transformS_into aNumericsurfaceS,.
- To select an interpolation and extrapolation metho8,.

It is very simple because the determination of ldAdvery variable is very easy, since its
words are almost identical with words in naturahg@ksh) language. In addition, in practice of
fuzzy control, only two hedges are sufficient. Thember of the independent fuzziness
parameters is very small, only two. It is importdmat they are the parameters of the whole
variable, irrespective how many words are preserihé control knowledge. When specifying
values of these parameters, all the quantificatizeracteristics of HAs, including their SQMs,
are fully defined and calculated. In addition, thirpolation and extrapolation are familiar for
any ones. Now, since there are only few numerierpalation methods, with the simplicity
above analyzed, it is interesting that the onlyidift thing to be determine is the independent
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fuzziness parameter values, which, however, casilfiyabe determined by trial-error, or even
by an evolutionary algorithm [19].

It is most essential, however, that in modelingrttehematical model should preserve the
math-structure of words of interest. Sirggs the isomorphic image & and the shape &, is
similar to S, we have a formal basis to believe that the imfetjpn on Sy will produce
appropriate control action values. All of theselakpwhy we regard the proposed HA-based
method as being sound. It is maybe by this redseinitial studies based on this method in this
field can achieve more effective results in congmariwith counterpart ordinary fuzzy control
methods [15- 18, 19, 20].

To show further that a sound method will bring the effectiveness in applications, we
present below some plots describing the contrabcefiof hedge algebra based controllers
(HACSs). The design of HACs comprises the followtagks:

- Determinedx; = (X, G;, G, H;, <) for every

- o . . Table 4.6 The system parameters with
linguistic variables X; present in fuzzy

, zzy ATMD.
model (4.1). In recent practice, it is - — STmess
ici - : assm ampingc tiffnessk;
Zuﬁlctlegtbto usgvt_wo hedges for eakh Storeyi | 15 ka) | (1PNsim)| (10 N/m)
enoted by andV; , _ 1 450 261.7 180.5
- Determine the fuzzy model using words in [ 215 3456 2037 3404
terms of elements the determined HAS, 16 104 018 ca7r oar
as, usually, words present in (4.1) are of the
form, for instance, Negtive Big (NB) or “Positive Small (PS, .... This task can be

realized by establishing the word-transformaticat thaps the words of in (4.1) into suitable
words of the determined HAs. To preserve the seowmmtf words, all the established
transformations should preserve the order-basediorships and the opposite meaning of
terms, e.g. the opposite ter8 and PB are transformed respectively intS andV;B,
which are of opposite meaning in their respectivesH

- Determine appropriate semantics of words of eggh by searching the independent
fuzziness parameter valuesgfthe values ofm(c") and/(L;), for every.x.

- Calculate the grid of points that define approxehathe surfac& and determine an
interpolative method 08§,.

3 A
Table 4.7Rule base fortt Table 4.8 Rule base for the VAYA ko Mie
actuator on the®storey. actuator on the f5storey. )G > X
' N z P s N z P Mis | —
X2 Xas [\/V\J kis rBJ Cis X1
NB NB | NM | NS NB NB | NM | NS my 5 | >
NS NM | NS z NS NM NS z ' ' X4
z NS z PS z NS z PS m | : >
X
PS z PS | PM PS z PS | PM [\N\J ka IE’J g
1

m, [ >
PB PS | PM | PE PB PS PM | PB
m & . >
For illustration, we present some results of the I;Nf Ky ; g, M
application of the design of HACs amgpHACs to a

vibration problem of the control of high-rise stiw@l > %,

systems presented in Figure 4.2 with active tunedsm
damper (ATMD) against earthquakes to show the

Figure 4.2.The structural system.
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advantages of the proposed HA methodology. Thes&dllers were examined and simulated
with the recorded seismic data of three typicatheprakes, ElI Centro, Northridge and Kobe, to
demonstrate their performance and, by this, toririe to state the advantages of the approach.
A high-rise building structural system with ATMDsasned to have fifteen degrees of freedom
all in a horizontal direction described in Figure2,4was taken into account to make a
comparison study of distinct controllers.

Note that the fuzzy controllers (FCs) examined heeee designed by the same method
examined in [21].

1) Determining the control problem and its discretntrol model As it can be seen in
Figure 4.2, the system is modeled with two actietuaors of different types to suppress
structural vibrations against earthquakes. Accaglglirone is installed on the first storey and the
other on the fifteenth storey, since the maximurerigtorey shear force occurs on the first
storey and the maximum displacements and acce&lasadire expected from the top storey of the
structure during an earthquake, assuming equivaleney stiffness and ultimate capacities. In
Figure 4.2/m; is a movable mass of the ground storey mpdr, ..., s are the masses of the
remaining storeys, where the mass of all storegisidie both the ones of storeys and their walls.
The massng is of the ATMD installed on the fifteenth stor@yhe variablesy, X, X3, ..., X14 and
X15 indicate the horizontal displacements anglindicates the displacement of the ATMD. The
variablex, is the earthquake-induced ground motion disturbatocthe considered structural
system. All springs and dampers are acting in dr&zbntal direction. The system and ATMD
parameters examined in [21] are given in Table wiich are used here for a comparative
study.

Table 4.9 Linguistic transformation fc Table 4.10Linguistic transformation fou, anduys,

X, %y, X5 and Xs.
NB N z|] P | PB NVB[ NB | N | z | P | PB|PVB
Little Little Very Little Little Very
smalll smai | W | Jarge | 'a79€ smal | Small| gmai | W large large large

Based on the discrete control model establisheddbas the dynamic model of fifteen-
degrees-of-freedom structural system equipped WEND given in [21], the fuzzy rule bases
of the two active actuators that were examinedtha paper are given in Tab. 4.7 and 4.8.

2) Constructing control algorithm for the desirétAC: As discussed at the beginning of
Section 4.3, the HA-rule base can be obtained by sklection of appropriate word-
transformations, which are given in Tab. 4.9 arid4.

. The design of HACS he semantics of words of HACs were designedpaddently
from the recorded seismic data of the three eaatkegi mentioned above, i.e. not based on the
semantics of words used in the common reality adhegaakes. In this situation, for all linguistic
variables, we should hay&€l) = ((h,) = (V) = 1(hy) = 0.5,fm(smal) = 0.5;fm(large) = 1 —
fm(smal) = 0.5. Even though, by simulation results, it seen that such HACs still work
better than the counterpart standard FCs in cdingdhe system against earthquakes.

. The design of optimal HAQspHAC): The fuzziness parameters for determining the
semantics of words used in the context of earthejaata were optimized using the seismic data
of El Centro earthquake in USA given fatp://www. vibrationdata.com/elcentro.htrwhich
were recorded at the El Centro Terminal SubstaBailding on May 18th, 1940 with Peak
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Ground Acceleration (PGA) 0.85will be used for the design opHACs. The idea of solving
the fuzziness parameter optimization problem isidlesd as follows: since it is difficult for the
designer to determine the appropriate fuzzinesanpetiers for a practical application problem,
the data of El Centro earthquake is chosen randamlyng three mentioned earthquakes as the
training data to determine the near optimal fuzzsnparameters for the earthquake protective
structural system under consideration. They arardegl as the word semantics used for
describing the seismic data in the reality of eguttkes. The goal function of the fuzziness
parameter optimization problem is defined as folow

_ . N X22 H . 25 H . 2/
0=Wigs +Wagp + Wals With g =3 (), g, :ijoxl (J) and, =y, X5(J)

j=0 2 2

a ag aj,
wherex; indicates the horizontal displacement of the strey,a; indicates the absolute peak
displacement, for = 1, ..., 15, and velocity vectors of the uncolhib state of the structure

excited by earthquake ground shakimg; indicates the displacement of the ATMD;is the
number of control cycles, th&'s are specified above; and the positive weightsw, andws;

satisfy the equalityy; + w, + ws = 1. The values of the weights should be carefsdijected in
the design obpHACs for the application.

fm(c) u(h) fm(c) w(h")
W W W
' 2 ° (1)) (V) (Vi) (Vss)
0.40 0.40 0.20 0.594037 0.500196 0.5166018 0.543988

For simplification of the evolutionary algorithmnlyg the semantics of the words of the
variablesx; and xis are optimized and the weighis, w, andw; are determined by trial-error.
For the variablev (control actioru), its fuzziness parameters are defined as follém@&mal) =
M(Little) = 0.5. Then, the optimal fuzziness parameteregahf ¥, and.x;s and the weight values
were found, as follows.

Storey Storey Storey
15— 15 . . . . 15 N
14 " | “‘ 14 14 l'l:/
13 T / [ 13 | 13 I J
12 ] / | 12 12 Y/
w0f Fw off /
9 /é / 9 9 I
8 /" / 8 | v 8 /
7 '! Uncontrolled_ _ _ 7 Uncontrolled — — — h ‘ Uncontrolled — — —
6 # Fuz. Control 6 Fuz. Control 6 'l Fuz. Control
51} HAC . 5 1/ HAC - 5 HAC -
Al OpHAC ) I': OpHAC 4 '.} OpHAC
3 / 3 ll ,', 3 /
2 AN - :
1 ) ) ) ) y ) ) 1 | Y v 1 ] (m) 1 (m)
008 012 016 020 024 0.10 015020 0.25 0.300.3¢ 020 030 040 0.500.5¢
Figure 4.3 Peak Storey __Figure 4.4.Peak storey Figure 4.5.Peak Storey
displacements (m), El Centro displacements (m), Northridge displacements (m), Kobe
Earthquak. earthauak. Farthauak.

22



Hedge Algebras, the semantics of vague linguistic information and application prospective

(m) (m)
0.6 Uncontrolled - 4 Uncontrolled  -oeeeeeeeeee
0.4 ,Fuz" Coﬁtrok’ f Fuz. control

0.2
0 0
-0'2 -2 llllllllll
-0.4
06 © 4 opHAC )
0 5 10 15 20 25 30 35 40 45 0O 5 10 15 20 25 30 35 40 45
Figure 4.6.The time displacements response Figure 4.7.The time displacement responses of
the top storeyxys) of Kobe earthquake. ATMD (x.6) of Kobe earthquake.

To see how well work the designed HACs apHACs in comparison with the standard
designed FC, for reducing space of the report, ueeghere only few plots of the simulation
results studied in [22]:

() The displacement responggigures 4.3 — 4.5 represent the peak displacemaall
storeys, which indicate that the peak displacemprasiuced by the designed controllers are
increased from FC to HAC and thendpHAC for all fifteen storeys of the building and ati
three examined earthquakes.

(if) The time responses of the displacements of tm top storeyx;s) and the ATMD X¢)
for the three controllers are depicted in Figur&sahd 4.7, respectively.

5. CONCLUSIONS

We have argued that HAs seems to be a sound maibehstructure for modelling and
handling immediately the semantics of words. Tlasegtion can be drawn from fundamental
mathematical, logical and practical bases. On &lgidewpoint of semantics of words, as
syntactic expressions, the semantics of words dhmaiht at some things in reality. That is one
has to think of at which items in reality a vagunglistic value like “beautiful” points at when a
person uses this word. We have argued that herdielink of a “fuzzy set” of certain beautiful
items. Stemming from the demand of human decisiakimg we have pointed out that the word
“beautiful” a human being uses aifttsmake a comparisobetween properties of certain items
in the reality. This viewpoint seems to be muchaide if, for instance, we put this word in a
context of words that includes “more beautiful’ety beautiful” and “rather beautiful”.

On the practical viewpoint, it is natural that humzeings handle immediately their words
in their daily lives. Therefore, any theory thamaito simulate human capabilities should
provides a sufficient mathematical formalism to Ideamediately with words and their
semantics that human being assign to them in yedtlitan be observed that word-domains of
linguistic variables can be viewed as order-bagaettsires induced by the natural qualitative
semantics of words. Therefore, HAs can be congidasea natural formalism for modeling the
semantics of words. We show also that HAs aredhadlized theory that deal directly with the
inherent qualitative semantics. According to ouowledge, up to now only hedge algebras
satisfy these requirements.

In addition, as we have presented in the reposl ttave been developed based on a strict
axiomatic foundation, as their name “algebra” s&smember that all concepts “fuzziness”,
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“fuzziness measure” and “semantically quantifyin@ppings” are developed based on an
axiomatization manner.

It offers many theoretical and methodological adagas and, hence, we may expect that it
could bring out effective applications in differeateas. The effectiveness of the initial
applications of HAs in some distinct fields presehin this report contribute to realize this
hope.
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TOM TAT

DAI SO GIA TU, NGU NGHIA CUA THONG TIN NGON N&J MO
VA TRIEN VONG UNG DUNG

Cat Ho Nguyeh’, Thai Son Trah Nhu Lan V42
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%Pai hoc Thing Long, Nghiém Xuan Yém, Hoang Mai, Ha, Niét Nam
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Muc tiéu dia bai baodng quan 1a mén ching © dai s6 gia tir thyc sy mé hinh hoéatugc

ngit nghia drng dan aiia i ngon ng ciia cac bén, dra trén o 5 1ap luan rang ngr ngtia dinh
tinh von ¢ @a chung phi bicu thi qua cac quanéhthe ty giira cac i cua cung njt bien ngon
ngit. Ngit nghia nhr vay duoc hinh thanh trong tre tién do nhu &u trong qué trinhaly quyét
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dinh trong céc $ng hang ngayi@ con ngoi. Pac diém mé hinh hoa nigngha aia tir ngdn
ngit bang quan B thac tr lam cho cach &p cin dai sb khac bét hoan toan cac caclépi cin hién
tai va lam chadai s gia tr tro thanh i thugt dau tién cé th thao tac trc tiép trén cacit ngdn
ngr. Chung t6i lam sangttrng hrée nhiing déc trung va cac tinh i khac bét biéu thi qua
cac quan &thi ty trong cach ip cin nay va quad ching © rang cach #p can ladingdan va
la oo s bao dam tinh hBu qua trong viéc brde dau giai quyét cac bai toaning dung. Quado
chiing © dai s gia tr c6 nhiu hia hen trong véc phat trén cac plrong phap lan dé giai quyét
cac bai toan thic cac inh wrc tng ding khac nhauDé lam sangd cac kling dinh nhr vay,
chang toi 8 tdng kKt cac Kt qua tng ding aia dai sd gia tr trong ndt sH van dé thuse linh wrc
khai pha tri tikc vadiéu khién mo.

Tur khoa ngr nghia dra trén th tu, tinh nd cua tr ngdn ng; ngir nghia dra trén ip my, he mo
dua trén tri thc luat, bai toan phamnsp, dieu khien mo.
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