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ABSTRACT 

The Skyrme equation used widely in Physics is singular at the boundary r = 0. The 
singularity causes uncontrollable instabilities in the numerical solutions. This paper presents a 
new computa- tional schema to overcome this difficulty to give the solutions with an arbitrarily 
high accuracy by combining the numerical methods with a global analysis.  
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1. INTRODUCTION 

It was Skyrme who has shown that nucleons can be modeled as solitons of a non-linear 
differential equation [1]. In the static and spherically symmetric case, it simplifies to the Skyrme 
equation 

 

 
for the real-valued function F (r) of the radial coordinate r. The solutions of the Skyrme equation 
can be found numerically with the following boundary condition 

where N is an integer. Adkins, Nappi and Witten [2, 3] have shown the numerical solution of 
Eq.(1) describes nucleons within 30 % errors. 

       The idea of Skyrme has become very popular, but the solutions of the Skyrme equation have 
not been studied systematically, except the approximated analytic solution of Atyiah-Manton 
[4]. It is not clear whether topologically non-stable solutions exist besides the topologically 
stable ones. In the recent numerical experiments [5], we have shown that the solutions presented 
in [2, 3] are problematic in the infinitesimal neighborhood of the origin r = 0, and the numerical 
results are not reliable. 
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In this paper, we will conduct a systematic schema by combining the numerical treatment 
with a global analysis, leading to more reliable numerical results 

2. THE NUMERICAL EXPERIMENTS 

Using the forward shooting method [6] starting from the boundary point F(0) = Nπ, we can 
obtain with an arbitrarily high precision the numerical solutions which oscillate with damping 
around the F(r) = 0 axis. These solutions have infinite energy.  

We can obtain the finite energy solution by following procedure: At the large value of the 
variable r, Eq.(1) simplifies to 

 

which has the following asymptotic solution at large r 

 
where C is an integration constant. We can use the backward shooting method starting from the 
point r = R = 20 with the asymptotic formula (4). Varying the value of C, one finds a solution 
within a certain chosen error as shown in Fig. 1 for both cases m = 0 and m ≠ 0. 
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Figure 1. The profile function of a skyrmion with m = 0  (a)  m = 0,48 (b). 

These solutions become unstable, if a too high precision is required. It can be explained as 
follows: 

Let us draw the solution curve with m = 0 in Fig. 1 with a magnification, in the 
neighborhood r = 0 to the distant of 10−11 in Fig. 2. 
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Figure 2. Magnification of the curve m = 0 in Fig.1a in the neighborhood of r = 0. 

The above curve goes very close to F (0) = π, but turns sharply to the points F (0) = 3π/2. 
So, the topological charge of the solution derived from this curve is not 1. If a too high precision 
is required, it is very difficult to reach the point F (0) = π by the backward shooting method. 

But such a solution still exists. We can demonstrate its existence by drawing all possible 
solution trajectories near the real solution as in Fig. 3. 

 

Figure 3. The trajectories near the solution to the boundary condition with α = π/2. 

Since most solution trajectories of Eq. (1) swing between F (0) = π/2 or F (0) = 3π/2 just by 
a very small change in initial values of the parameter C. The trajectories can go as close to the 
point F (0) = π as possible, but in the last step they turn to up or down direction sharply. The 
trajectory which separates the up going and down going trajectories is the solution going to the 
point F(0) = π.  

3. GLOBAL ANALYSIS 

3.1. Boundary conditions and asymptotic solutions 
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Equation (2) is still not a complete initial or boundary condition for Eq. (1). In the 
numerical experiments, we have observed that the trajectories of Eq. (1) are attracted to the 
points F (0) = kπ/2 with a deviation less than 10 %. The attempts to increase the precision in the 
neighborhood of r = 0 often result in instabilities. Fortunately, we are able to prove the following 
proposition for the asymptotic behavior of all possible solutions of the Skyrme equation near the 
origin r = 0. 

Proposition 1. The solutions of the Skyrme equation must have one of the following asymptotic 
formulas 

 

 

 

Proof. Let us introduce the parameter a and the function Y (r) as follows 

 

 

We have the limit 

 
In the case a ≠ 0, Eq. (1) have the following asymptotic form in the neighborhood of  r = 0 

 

Eq. (11) has the following analytic solution 

 

 – 2  ሺ1, 1; 3/2, 2; ‐         (12) 

where C[1] and C[2] are two arbitrary integration parameters.  The Gauss error function  

is defined in Ref.[7] as follows  
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The generalized hyper-geometric function 2F2(1, 1; b, 2; x) is defined in Ref.[8] as follows 

 

 

where the Pochhammer symbol bn is defined as follows 

 

Since limr→0 ln(r) = −∞, the condition (10) requires C[2] = 0 and a = ±1, which means 
that F (0) = (2k + 1)π/2, if F (0) ≠ nπ. Eq.(12) leads to the following asymptotic formula of the 
profile function F (r) 

 

In the infinitesimal neighborhood of r = 0, the Gauss error and generalized hyper-geometric 
functions can be approximated as follows 

 

 

From Eqs. (19) - (20), we obtain the asymptotic formulas (5) and (6). In the case a = 0, 
the following approximations can be used when r → 0 
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where β is a finite value number. Eq.(1) is now reduced to the following asymptotic form 

 
Equation (23) has the following analytic solution 

 

satisfying Y (0) = 0 and Y ′(0) = F ′(0) = β. Eq. (24) implies the asymptotic formula (7). 

In summary, at the origin r = 0, the solutions of the Skyrme equation must have the values F 
(0) = nπ/2. Beside the solution with the usual boundary value F (0) = nπ and the asymptotic 
formula (7), there are solutions with the boundary values F (0) = (4k + 1)π/2 and F (0) = (4k + 
3)π/2 and the asymptotic formulas (5) and (6) respectively. In the asymptotic formulas, there is 
only one free parameter β = F ′(0) to choose to satisfy the second boundary condition as r → ∞. 

Let us consider the cases k = 1 and n = 1 in Eqs.(5-7), we have three families of solutions 
with the boundary condition at the origin r = 0 F (0) = π/2, π, 3/2π. As we have seen in the 
numerical experiments, the topologically stable solution with the boundary condition F (0) = π is 
the limit between the other two families of solution with the boundary conditions F (0) = π/2 and 
F (0) = 3π/2. 

In the next section, we will examine the energy of these solutions and see that only the 
solution with the boundary condition F (0) = π is energetically stable. 

3.2. Energy finiteness and skyrmions 

The energetically stable solutions must have a finite energy, which is given with the 
following formula [1-3] 

 

where  = 186M eV is the pion decay constant and e is the parameter of the Skyrme model 

satisfying the Balachandra’s bound [9] 
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The finiteness of the expression (25) has two implications. Firstly, the finiteness of the last 
term in the limit r → 0 implies that sin(F (r)) → 0. Hence, for the skyrmions we have the 
following boundary value 

 

In other words, Eq.(25) selects out the skyrmions from the infinite energy solutions, which 
have the boundary condition F (0) = (N +1/2)π. Secondly, in the limit r → ∞, the first term in the 
integrand must tend to zero to keep the energy finite, which means that F (∞) = kπ. So, the 
condition F (∞) = 0 is not necessary to keep for the skyrmion solutions. Instead we can look for 
the skyrmion solution with the following boundary condition 

 
where N and k are integers. The difference N−k can be interpreted as the conserved baryon 
number. 

In the article [5], the skyrmions which are confined within a finite radius R are also studied 
with possible applications in the dense hadronic matter. 

4. NUMERICAL CALCULATIONS COMBINED WITH THE GLOBAL ANALYSIS 

In the light of the global analysis presented in Sect 3, we can understand the results of the 
numerical experiments of Sect 2. 

First, we understand why the numerical backward shooting method can hit the solution 
easily with an asymptotic formula at the large value of r → ∞. 

Secondly, we understand that the obtained numerical solutions are not the real finite energy 
skyrmions. If we increase the accuracy, the obtained trajectories will turn to other boundary 
values in the small neighborhood of r = 0. This infinitesimal behavior will make the energy 
infinite. Thus the numerically obtained solutions are not stable both topologically and 
energetically. 

Thirdly, the topologically and energetically stable solutions in fact exist as a limit between 
the two neighboring unstable solution families. This can be seen in Fig. 3. 

Lastly, having in mind the asymptotic formulas (7) in principle, we can use the numerical 
forward shooting method in the small neighborhood of r  =  0 and change the value of β = F ′(0) 
until the second boundary condition F (∞) = kπ is satisfied. 

In Fig. 4, we choose the case of F (∞) = π, F (0) = 2π and m = 0.48, the numerically 
obtained solution has a complicated damping oscillating behavior. 

However, using the energy formula (25), we can show numerically that the energy of this 
solution is not finite. So, it is not energetically stable. The attempts to vary the value of β to 
avoid the oscillating damping solution in search of the stable solutions have not given the 
converged results. 

To compromise between the above numerical methods, we have used the forward shooting 
method in a small neighborhood of r = 0 and the backward one outside of it. This solution has a 
good large distant behavior, while in the small neighborhood, the solution depends on one 
parameter β = F ′(0). In principle, we can vary the value of β until, the derivatives of two curves 
coincide at a “patching” distant R = 0.01 for example. 
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Figure 4. The damping behavior of a solution with a topological charge B = 1, m = 0.48, a = . 

In order to make the algorithm convergent, we have used the above ”patched” solution as 
the initial values for a combined backward and forward finite-difference numerical schema. 
Unfortunately, the used numerical schema does not converge. 

5. DISCUSSION 

In this paper, we have shown the issues in the numerical treatment of the Skyrme equation 
in a systematical way. A global analysis helps us to understand the numerically obtained results 
and the irregular behavior of the solutions. The topologically and energetically stable solutions 
are difficult to achieve. However, they can be approximated by the unstable with an arbitrarily 
high accuracy. In the light of the global analysis, we can distinguish the unstable solutions with 
the accumulated numerical errors of the stable one. 
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TÓM TẮT 

PHÂN TÍCH TOÀN CỤC TRONG XỬ LÍ SỐ ĐỐI VỚI PHƯƠNG TRÌNH SKYRME 

Nguyễn Ái Việt 
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 Phương trình Skyrme được sử dụng rộng rãi trong Vật lí có kì dị tại  biên r = 0.  Kì dị gây 
ra mất ổn định. Bài báo đưa ra một khung tính toán mới để vượt qua khó khăn này để đưa ra các 
lời giải với độ chính xác cao tùy ý bằng cách phồ hợp các phương pháp tính số với phân tích 
toàn cục  

Từ khóa:  vật lí tính toán, tính số, phương trình vi phân. 


